SRUN: Spectral Regularized Unsupervised Networks for Hyperspectral Target Detection

高光谱成像 自编码 模式识别(心理学) 判别式 计算机科学 人工智能 特征提取 亚像素渲染 维数之咒 像素 人工神经网络
作者
Weiying Xie,Jian Yang,Jie Lei,Yunsong Li,Qian Du,Gang He
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (2): 1463-1474 被引量:26
标识
DOI:10.1109/tgrs.2019.2947033
摘要

The high dimensionality of a hyperspectral image (HSI) provides the possibility of deeply capturing the underlying and intrinsic characteristics in spectra, such that targets embedded in the background can be detected. However, redundant information, deteriorated bands, and other interferences from background challenge the target detection problem. In this article, an effective feature extraction method based on unsupervised networks is proposed to mine intrinsic properties underlying HSIs. Our approach, called spectral regularized unsupervised networks (SRUN), imposes spectral regularization on autoencoder (AE) and variational AE (VAE) to emphasize spectral consistency, which is more suitable for characterizing spectral information of HSIs by hidden nodes than the original AE and VAE models. Then, we conduct a simple feature selection algorithm on the hidden nodes in the deepest code to select specific nodes that contain distinguishability between target and background, which is based on the spectral angular difference between a known target spectrum and spectra of other pixels in input. The selected nodes are further weighted adaptively to obtain a discriminative map depending on the observation that each selected node provides different contribution rates to target detection. Experimental results on several data sets illustrate that the proposed SRUN-based target detection algorithm is suitable for targets at the subpixel level and those with structural information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xufund发布了新的文献求助10
刚刚
1秒前
1秒前
pcr163应助踏实雨采纳,获得60
1秒前
顾矜应助踏实雨采纳,获得30
1秒前
田様应助lmp采纳,获得10
2秒前
凝夜完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
6秒前
orixero应助俏皮的一德采纳,获得10
8秒前
8秒前
9秒前
李喜喜发布了新的文献求助10
9秒前
XLC发布了新的文献求助30
12秒前
善学以致用应助李喜喜采纳,获得10
14秒前
善学以致用应助欢呼流沙采纳,获得10
15秒前
JazzWon完成签到,获得积分10
15秒前
15秒前
无花果应助迅速的八宝粥采纳,获得10
16秒前
16秒前
专注的问筠完成签到,获得积分10
17秒前
小猛人发布了新的文献求助10
21秒前
zz发布了新的文献求助10
22秒前
怕黑道消完成签到 ,获得积分10
23秒前
施储完成签到,获得积分10
24秒前
情怀应助喝酒的二胖采纳,获得10
25秒前
研友_VZG7GZ应助XLC采纳,获得30
26秒前
科研通AI5应助小猛人采纳,获得10
28秒前
29秒前
小马甲应助zz采纳,获得10
29秒前
31秒前
31秒前
执着的采枫发布了新的文献求助200
33秒前
33秒前
LU完成签到,获得积分10
33秒前
33秒前
34秒前
shelemi发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669