Graph Convolutional Networks for Drug Response Prediction

卷积神经网络 计算机科学 药物反应 图形 卷积(计算机科学) 人工智能 二元分类 深度学习 理论计算机科学 机器学习 药品 支持向量机 人工神经网络 生物 药理学
作者
Tuan Nguyen,Giang T.T. Nguyen,Thin Nguyen,Duc‐Hau Le
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 146-154 被引量:128
标识
DOI:10.1109/tcbb.2021.3060430
摘要

Drug response prediction is an important problem in computational personalized medicine. Many machine-learning-based methods, especially deep learning-based ones, have been proposed for this task. However, these methods often represent the drugs as strings, which are not a natural way to depict molecules. Also, interpretation (e.g., what are the mutation or copy number aberration contributing to the drug response) has not been considered thoroughly.In this study, we propose a novel method, GraphDRP, based on graph convolutional network for the problem. In GraphDRP, drugs were represented in molecular graphs directly capturing the bonds among atoms, meanwhile cell lines were depicted as binary vectors of genomic aberrations. Representative features of drugs and cell lines were learned by convolution layers, then combined to represent for each drug-cell line pair. Finally, the response value of each drug-cell line pair was predicted by a fully-connected neural network. Four variants of graph convolutional networks were used for learning the features of drugs.We found that GraphDRP outperforms tCNNS in all performance measures for all experiments. Also, through saliency maps of the resulting GraphDRP models, we discovered the contribution of the genomic aberrations to the responses.Representing drugs as graphs can improve the performance of drug response prediction. Availability of data and materials: Data and source code can be downloaded athttps://github.com/hauldhut/GraphDRP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超越发布了新的文献求助10
刚刚
彭于晏应助儒儒采纳,获得10
1秒前
orixero应助干冷安采纳,获得30
2秒前
华仔应助xyz采纳,获得10
3秒前
Dsunflower完成签到 ,获得积分10
3秒前
louis dai发布了新的文献求助10
8秒前
甜蜜的翠柏完成签到,获得积分10
10秒前
lxl发布了新的文献求助10
12秒前
传奇3应助Jere采纳,获得20
17秒前
17秒前
18秒前
飞云完成签到,获得积分10
21秒前
Hello应助薄饼哥丶采纳,获得10
22秒前
22秒前
Jadon发布了新的文献求助10
23秒前
26秒前
26秒前
28秒前
kHz完成签到,获得积分10
29秒前
29秒前
龙仔发布了新的文献求助10
31秒前
31秒前
32秒前
xxl完成签到,获得积分10
33秒前
34秒前
Jadon完成签到,获得积分10
35秒前
薄饼哥丶发布了新的文献求助10
36秒前
拉长的晓蕾完成签到,获得积分10
39秒前
儒儒发布了新的文献求助10
39秒前
40秒前
kiko完成签到,获得积分10
40秒前
FashionBoy应助超越采纳,获得10
40秒前
41秒前
梨涡宝宝完成签到 ,获得积分10
41秒前
44秒前
干冷安发布了新的文献求助30
49秒前
薄饼哥丶发布了新的文献求助10
51秒前
123发布了新的文献求助10
52秒前
53秒前
可爱的函函应助加百莉采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533