A multi-modality radiomics-based model for predicting recurrence in non-small cell lung cancer

无线电技术 医学 一致性 队列 肺癌 阶段(地层学) 肿瘤科 医学影像学 癌症 放射科 人工智能 内科学 列线图 计算机科学 生物 古生物学
作者
Jaryd R. Christie,Mohamed Abdelrazek,Pencilla Lang,Sarah A. Mattonen
标识
DOI:10.1117/12.2586233
摘要

Non-small cell lung cancer (NSCLC) is one of the leading causes of death worldwide. Medical imaging is used to determine cancer staging; however, these images may hold additional information which could be utilized to aid in outcome prediction. A multi-modality radiomics approach incorporating quantitative and qualitative features from the tumor and its surrounding regions, along with clinical features, has yet to be explored. Therefore, we hypothesize that a model containing CT and PET radiomic features, in addition to clinical and qualitative features, has the potential improve risk-stratification of NSCLC patients better than cancer stage alone. Our dataset consisted of 135 NSCLC patients (training: n=94, testing: n=41) who underwent surgical resection. Each region of interest was segmented using a semi-automatic approach on both the pre-treatment CT and PET images. Radiomic features were extracted using the Quantitative Image Feature Engine. A total of 1030 features were extracted including clinical, qualitative, and radiomic features. LASSO regression was used to identify the top features to predict time to recurrence in the training cohort and the model was evaluated in the testing cohort. A total of nine features were selected, including two clinical, one CT, and six PET radiomic features. The model achieved a concordance of 0.81 in the training cohort, which was validated in the testing cohort (concordance=0.79) and outperformed stage alone (concordances=0.68-0.69). This model has the potential to assist physicians in risk-stratifying patients with NSCLC and could be used to identify patients that may benefit from more aggressive or personalized treatment options.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苦酷完成签到,获得积分10
2秒前
Akim应助朴实云应采纳,获得10
2秒前
小叙发布了新的文献求助10
3秒前
Handy完成签到,获得积分10
3秒前
谦让汲发布了新的文献求助10
4秒前
4秒前
希望天下0贩的0应助梁博采纳,获得30
4秒前
5秒前
5秒前
CipherSage应助张大宝采纳,获得10
6秒前
wsq完成签到,获得积分10
6秒前
受伤觅露发布了新的文献求助20
6秒前
lxiaok完成签到,获得积分10
7秒前
xixi发布了新的文献求助10
7秒前
7秒前
8秒前
Leonardi给无敌暴龙战神的求助进行了留言
8秒前
C2750完成签到,获得积分10
9秒前
lwl发布了新的文献求助10
9秒前
zzzyyc发布了新的文献求助10
9秒前
张雨露发布了新的文献求助10
9秒前
jessia完成签到,获得积分10
10秒前
iiiicecream发布了新的文献求助10
10秒前
友好白凡发布了新的文献求助10
11秒前
Hyperme发布了新的文献求助10
11秒前
星辰大海应助谦让汲采纳,获得10
13秒前
13秒前
14秒前
14秒前
14秒前
852应助qq采纳,获得30
14秒前
柯夫子完成签到,获得积分10
14秒前
16秒前
16秒前
17秒前
17秒前
rpe发布了新的文献求助10
18秒前
众生平等完成签到,获得积分10
18秒前
机智的曼易完成签到,获得积分10
19秒前
鸣笛应助国服懒羊羊采纳,获得50
19秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Implantable Technologies 500
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3918072
求助须知:如何正确求助?哪些是违规求助? 3463537
关于积分的说明 10929291
捐赠科研通 3191356
什么是DOI,文献DOI怎么找? 1763827
邀请新用户注册赠送积分活动 853909
科研通“疑难数据库(出版商)”最低求助积分说明 794181