Artificial Intelligence for Fast and Accurate 3-Dimensional Tooth Segmentation on Cone-beam Computed Tomography

分割 人工智能 锥束ct 计算机科学 标准差 计算机视觉 Sørensen–骰子系数 特征(语言学) 模式识别(心理学) 图像分割 计算机断层摄影术 数学 医学 放射科 统计 哲学 语言学
作者
Pierre Lahoud,Mostafa EzEldeen,Thomas Beznik,Holger Willems,André Ferreira Leite,Adriaan Van Gerven,Reinhilde Jacobs
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:47 (5): 827-835 被引量:145
标识
DOI:10.1016/j.joen.2020.12.020
摘要

IntroductionTooth segmentation on cone-beam computed tomographic (CBCT) imaging is a labor-intensive task considering the limited contrast resolution and potential disturbance by various artifacts. Fully automated tooth segmentation cannot be achieved by merely relying on CBCT intensity variations. This study aimed to develop and validate an artificial intelligence (AI)-driven tool for automated tooth segmentation on CBCT imaging.MethodsA total of 433 Digital Imaging and Communications in Medicine images of single- and double-rooted teeth randomly selected from 314 anonymized CBCT scans were imported and manually segmented. An AI-driven tooth segmentation algorithm based on a feature pyramid network was developed to automatically detect and segment teeth, replacing manual user contour placement. The AI-driven tool was evaluated based on volume comparison, intersection over union, the Dice score coefficient, morphologic surface deviation, and total segmentation time.ResultsOverall, AI-driven and clinical reference segmentations resulted in very similar segmentation volumes. The mean intersection over union for full-tooth segmentation was 0.87 (±0.03) and 0.88 (±0.03) for semiautomated (SA) (clinical reference) versus fully automated AI-driven (F-AI) and refined AI-driven (R-AI) tooth segmentation, respectively. R-AI and F-AI segmentation showed an average median surface deviation from SA segmentation of 9.96 μm (±59.33 μm) and 7.85 μm (±69.55 μm), respectively. SA segmentations of single- and double-rooted teeth had a mean total time of 6.6 minutes (±76.15 seconds), F-AI segmentation of 0.5 minutes (±8.64 seconds, 12 times faster), and R-AI segmentation of 1.2 minutes (±33.02 seconds, 6 times faster).ConclusionsThis study showed a unique fast and accurate approach for AI-driven automated tooth segmentation on CBCT imaging. These results may open doors for AI-driven applications in surgical and treatment planning in oral health care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无聊的艳发布了新的文献求助10
刚刚
光而不耀发布了新的文献求助10
1秒前
one完成签到,获得积分10
1秒前
lune完成签到 ,获得积分10
1秒前
猫红茶完成签到,获得积分20
2秒前
想做只小博狗完成签到,获得积分10
3秒前
3秒前
ding应助yuan采纳,获得10
3秒前
hui发布了新的文献求助10
4秒前
慕青应助Georges-09采纳,获得10
5秒前
四块五完成签到,获得积分10
7秒前
ff完成签到,获得积分20
8秒前
8秒前
慕青应助22采纳,获得10
9秒前
大懒猪完成签到,获得积分10
10秒前
ll发布了新的文献求助10
11秒前
猫红茶关注了科研通微信公众号
12秒前
12秒前
打打应助别喝他的酒采纳,获得10
12秒前
无花果应助别喝他的酒采纳,获得10
12秒前
13秒前
大脸猫4811发布了新的文献求助10
13秒前
我的小宇宙呢完成签到,获得积分10
14秒前
小橙子应助cyh采纳,获得20
14秒前
15秒前
xc发布了新的文献求助20
16秒前
Scyyyyy完成签到,获得积分10
17秒前
我是老大应助小盆呐采纳,获得10
17秒前
hui完成签到,获得积分10
17秒前
我是老大应助JodieZhu采纳,获得30
17秒前
22发布了新的文献求助10
21秒前
huyulele完成签到,获得积分10
21秒前
21秒前
AlexLee完成签到,获得积分10
22秒前
Chen完成签到,获得积分10
22秒前
23秒前
26秒前
czcz完成签到,获得积分10
27秒前
28秒前
aqaqaqa完成签到,获得积分10
28秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4045419
求助须知:如何正确求助?哪些是违规求助? 3583043
关于积分的说明 11388210
捐赠科研通 3310462
什么是DOI,文献DOI怎么找? 1821919
邀请新用户注册赠送积分活动 893991
科研通“疑难数据库(出版商)”最低求助积分说明 815962