Evolutionary Optimization of High-Dimensional Multiobjective and Many-Objective Expensive Problems Assisted by a Dropout Neural Network

计算机科学 人工神经网络 水准点(测量) 进化算法 数学优化 辍学(神经网络) 贝叶斯优化 多目标优化 最优化问题 替代模型 机器学习 人工智能 算法 数学 大地测量学 地理
作者
Dan Guo,Xilu Wang,Kailai Gao,Yaochu Jin,Jinliang Ding,Tianyou Chai
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (4): 2084-2097 被引量:118
标识
DOI:10.1109/tsmc.2020.3044418
摘要

Gaussian processes (GPs) are widely used in surrogate-assisted evolutionary optimization of expensive problems mainly due to the ability to provide a confidence level of their outputs, making it possible to adopt principled surrogate management methods, such as the acquisition function used in the Bayesian optimization. Unfortunately, GPs become less practical for high-dimensional multiobjective and many-objective optimization as their computational complexity is cubic in the number of training samples. In this article, we propose a computationally efficient dropout neural network (EDN) to replace the Gaussian process and a new model management strategy to achieve a good balance between convergence and diversity for assisting evolutionary algorithms to solve high-dimensional multiobjective and many-objective expensive optimization problems. While the conventional dropout neural network needs to save a large number of network models during the training for calculating the confidence level, only one single network model is needed in the EDN to estimate the fitness and its confidence level by randomly ignoring neurons in both training and testing the neural network. Extensive experimental studies on benchmark problems with up to 100 decision variables and 20 objectives demonstrate that, compared to state of the art, the proposed algorithm is not only highly competitive in performance but also computationally more scalable to high-dimensional many-objective optimization problems. Finally, the proposed algorithm is validated on an operational optimization problem of crude oil distillation units, further confirming its capability of handling expensive problems given a limited computational budget.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安的松完成签到 ,获得积分10
6秒前
Fanfan完成签到 ,获得积分10
9秒前
克姑美完成签到 ,获得积分10
16秒前
Danish完成签到,获得积分10
18秒前
21秒前
chiah发布了新的文献求助10
26秒前
28秒前
moumou完成签到,获得积分10
32秒前
跳脚的虾完成签到 ,获得积分10
44秒前
TIX完成签到 ,获得积分10
48秒前
SH123完成签到 ,获得积分10
55秒前
sweet雪儿妞妞完成签到 ,获得积分10
58秒前
CipherSage应助雪上一枝蒿采纳,获得10
1分钟前
俊逸的盛男完成签到 ,获得积分10
1分钟前
Serena完成签到 ,获得积分10
1分钟前
1分钟前
文静的惜雪完成签到 ,获得积分10
1分钟前
bo完成签到 ,获得积分10
1分钟前
1分钟前
xmyang完成签到,获得积分10
1分钟前
流星雨完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
DONGmumu完成签到 ,获得积分10
1分钟前
我独舞完成签到 ,获得积分10
2分钟前
2分钟前
fhw完成签到 ,获得积分10
2分钟前
王珺完成签到,获得积分10
2分钟前
youngbin完成签到 ,获得积分10
2分钟前
lili完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
斯文败类应助科研通管家采纳,获得30
2分钟前
2分钟前
Young完成签到 ,获得积分10
2分钟前
2分钟前
zhying55发布了新的文献求助10
3分钟前
digger2023完成签到 ,获得积分10
3分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825038
求助须知:如何正确求助?哪些是违规求助? 3367362
关于积分的说明 10445297
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698238
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769911