Robust blind spectral unmixing for fluorescence microscopy using unsupervised learning

显微镜 荧光显微镜 荧光 人工智能 计算生物学 计算机科学 生物 物理 光学
作者
Tristan D. McRae,David Oleksyn,Jim Miller,Yu‐Rong Gao
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:14 (12): e0225410-e0225410 被引量:67
标识
DOI:10.1371/journal.pone.0225410
摘要

Due to the overlapping emission spectra of fluorophores, fluorescence microscopy images often have bleed-through problems, leading to a false positive detection. This problem is almost unavoidable when the samples are labeled with three or more fluorophores, and the situation is complicated even further when imaged under a multiphoton microscope. Several methods have been developed and commonly used by biologists for fluorescence microscopy spectral unmixing, such as linear unmixing, non-negative matrix factorization, deconvolution, and principal component analysis. However, they either require pre-knowledge of emission spectra or restrict the number of fluorophores to be the same as detection channels, which highly limits the real-world applications of those spectral unmixing methods. In this paper, we developed a robust and flexible spectral unmixing method: Learning Unsupervised Means of Spectra (LUMoS), which uses an unsupervised machine learning clustering method to learn individual fluorophores' spectral signatures from mixed images, and blindly separate channels without restrictions on the number of fluorophores that can be imaged. This method highly expands the hardware capability of two-photon microscopy to simultaneously image more fluorophores than is possible with instrumentation alone. Experimental and simulated results demonstrated the robustness of LUMoS in multi-channel separations of two-photon microscopy images. We also extended the application of this method to background/autofluorescence removal and colocalization analysis. Lastly, we integrated this tool into ImageJ to offer an easy to use spectral unmixing tool for fluorescence imaging. LUMoS allows us to gain a higher spectral resolution and obtain a cleaner image without the need to upgrade the imaging hardware capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慧慧完成签到,获得积分10
1秒前
CodeCraft应助罗明明采纳,获得10
1秒前
赘婿应助瘦瘦绿旋采纳,获得10
2秒前
2秒前
2秒前
Akim应助一兜哇采纳,获得10
3秒前
3秒前
Owen应助马铃薯采纳,获得10
5秒前
浮游应助唐唐采纳,获得10
5秒前
5秒前
6秒前
浮游应助lj采纳,获得10
7秒前
CodeCraft应助陈飞鹏采纳,获得10
7秒前
桐桐应助xiaoyi采纳,获得10
8秒前
222完成签到,获得积分20
8秒前
飘逸楷瑞发布了新的文献求助10
8秒前
小鸭我就这样完成签到 ,获得积分10
8秒前
9秒前
光亮宝贝完成签到,获得积分20
9秒前
9秒前
浮游应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
wlscj应助科研通管家采纳,获得20
10秒前
浮游应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
hzy6688应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
yxr应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262524
求助须知:如何正确求助?哪些是违规求助? 4423472
关于积分的说明 13769822
捐赠科研通 4298194
什么是DOI,文献DOI怎么找? 2358305
邀请新用户注册赠送积分活动 1354627
关于科研通互助平台的介绍 1315823