Radiomics-based machine learning model to predict risk of death within 5-years in clear cell renal cell carcinoma patients

人工智能 无线电技术 接收机工作特性 支持向量机 计算机科学 模式识别(心理学) 重采样 机器学习
作者
Mostafa Nazari,Isaac Shiri,Habib Zaidi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:129: 104135-104135 被引量:102
标识
DOI:10.1016/j.compbiomed.2020.104135
摘要

The aim of this study was to develop radiomics-based machine learning models based on extracted radiomic features and clinical information to predict the risk of death within 5 years for prognosis of clear cell renal cell carcinoma (ccRCC) patients.According to image quality and clinical data availability, we eventually selected 70 ccRCC patients that underwent CT scans. Manual volume-of-interest (VOI) segmentation of each image was performed by an experienced radiologist using the 3D slicer software package. Prior to feature extraction, image pre-processing was performed on CT images to extract different image features, including wavelet, Laplacian of Gaussian, and resampling of the intensity values to 32, 64 and 128 bin levels. Overall, 2544 3D radiomics features were extracted from each VOI for each patient. Minimum Redundancy Maximum Relevance (MRMR) algorithm was used as feature selector. Four classification algorithms were used, including Generalized Linear Model (GLM), Support Vector Machine (SVM), K-nearest Neighbor (KNN) and XGBoost. We used the Bootstrap resampling method to create validation sets. Area under the receiver operating characteristic (ROC) curve (AUROC), accuracy, sensitivity, and specificity were used to assess the performance of the classification models.The best single performance among 8 different models was achieved by the XGBoost model using a combination of radiomic features and clinical information (AUROC, accuracy, sensitivity, and specificity with 95% confidence interval were 0.95-0.98, 0.93-0.98, 0.93-0.96 and ~1.0, respectively).We developed a robust radiomics-based classifier that is capable of accurately predicting overall survival of RCC patients for prognosis of ccRCC patients. This signature may help identifying high-risk patients who require additional treatment and follow up regimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ng完成签到 ,获得积分10
5秒前
8秒前
彩色亿先完成签到 ,获得积分10
9秒前
超级手套完成签到,获得积分10
16秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
bonnie发布了新的文献求助10
22秒前
26秒前
属实有点拉胯完成签到 ,获得积分10
29秒前
23333完成签到,获得积分10
32秒前
我要读博士完成签到 ,获得积分10
40秒前
默默的筝完成签到 ,获得积分10
41秒前
bai完成签到 ,获得积分10
46秒前
47秒前
王翎力完成签到,获得积分10
49秒前
56秒前
58秒前
学习使勇哥进步完成签到 ,获得积分10
1分钟前
DE2022发布了新的文献求助10
1分钟前
风清扬应助bai采纳,获得20
1分钟前
1分钟前
秋夜临完成签到,获得积分0
1分钟前
昔昔完成签到 ,获得积分10
1分钟前
DE2022完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
yangxiaoxu完成签到 ,获得积分10
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
蒲蒲完成签到 ,获得积分10
1分钟前
喜悦向日葵完成签到 ,获得积分10
1分钟前
思绪摸摸头完成签到 ,获得积分10
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
科研狗的春天完成签到 ,获得积分10
1分钟前
和谐的夏岚完成签到 ,获得积分10
1分钟前
zhilianghui0807完成签到 ,获得积分10
1分钟前
1分钟前
zhixin完成签到,获得积分10
1分钟前
bckl888完成签到,获得积分10
1分钟前
倒立的松鼠完成签到 ,获得积分10
1分钟前
王佳豪完成签到,获得积分10
1分钟前
忽晚完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976735
求助须知:如何正确求助?哪些是违规求助? 3520831
关于积分的说明 11204855
捐赠科研通 3257602
什么是DOI,文献DOI怎么找? 1798814
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806663