Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa

湿地 植被(病理学) 遥感 环境科学 地理 生态系统 水文学(农业) 卫星图像 洪水(心理学) 自然地理学 生态学 地质学 生物 病理 岩土工程 医学 心理治疗师 心理学
作者
Bart Slagter,Nandin‐Erdene Tsendbazar,Andreas Vollrath,Johannes Reiche
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:86: 102009-102009 被引量:183
标识
DOI:10.1016/j.jag.2019.102009
摘要

Wetlands have been determined as one of the most valuable ecosystems on Earth and are currently being lost at alarming rates. Large-scale monitoring of wetlands is of high importance, but also challenging. The Sentinel-1 and -2 satellite missions for the first time provide radar and optical data at high spatial and temporal detail, and with this a unique opportunity for more accurate wetland mapping from space arises. Recent studies already used Sentinel-1 and -2 data to map specific wetland types or characteristics, but for comprehensive wetland characterisations the potential of the data has not been researched yet. The aim of our research was to study the use of the high-resolution and temporally dense Sentinel-1 and -2 data for wetland mapping in multiple levels of characterisation. The use of the data was assessed by applying Random Forests for multiple classification levels including general wetland delineation, wetland vegetation types and surface water dynamics. The results for the St. Lucia wetlands in South Africa showed that combining Sentinel-1 and -2 led to significantly higher classification accuracies than for using the systems separately. Accuracies were relatively poor for classifications in high-vegetated wetlands, as subcanopy flooding could not be detected with Sentinel-1's C-band sensors operating in VV/VH mode. When excluding high-vegetated areas, overall accuracies were reached of 88.5% for general wetland delineation, 90.7% for mapping wetland vegetation types and 87.1% for mapping surface water dynamics. Sentinel-2 was particularly of value for general wetland delineation, while Sentinel-1 showed more value for mapping wetland vegetation types. Overlaid maps of all classification levels obtained overall accuracies of 69.1% and 76.4% for classifying ten and seven wetland classes respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助123采纳,获得10
刚刚
zcz发布了新的文献求助10
2秒前
荔枝发布了新的文献求助10
2秒前
VV完成签到 ,获得积分10
4秒前
小杨完成签到,获得积分10
4秒前
6秒前
6秒前
6秒前
7秒前
zhang完成签到 ,获得积分10
7秒前
科研通AI5应助Bleser采纳,获得10
8秒前
付志敏完成签到 ,获得积分10
10秒前
123发布了新的文献求助10
11秒前
yang发布了新的文献求助10
12秒前
HCF发布了新的文献求助10
12秒前
科研通AI5应助失眠虔纹采纳,获得10
14秒前
无花果应助研友_LjDyNZ采纳,获得10
15秒前
allenice完成签到,获得积分10
15秒前
16秒前
Bleser完成签到,获得积分10
16秒前
123完成签到,获得积分10
16秒前
易欣乐慰完成签到,获得积分0
17秒前
17秒前
18秒前
多肉葡萄完成签到 ,获得积分10
19秒前
老实惊蛰完成签到 ,获得积分10
20秒前
Bleser发布了新的文献求助10
22秒前
wanci应助yang采纳,获得10
24秒前
搜集达人应助伍寒烟采纳,获得10
26秒前
28秒前
天天快乐应助Ssyong采纳,获得10
28秒前
无故事完成签到 ,获得积分10
28秒前
养生坤坤完成签到 ,获得积分10
28秒前
30秒前
31秒前
英俊白玉发布了新的文献求助10
31秒前
Erich完成签到 ,获得积分10
34秒前
35秒前
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777336
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211156
捐赠科研通 3038009
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098