Localised delineation uncertainty for iterative atlas selection in automatic cardiac segmentation

分割 地图集(解剖学) 豪斯多夫距离 计算机科学 人工智能 图像分割 医学 模式识别(心理学) 解剖
作者
Robert Finnegan,Ebbe Laugaard Lorenzen,Jason Dowling,Lois Holloway,David Thwaites,C. Brink
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (3): 035011-035011 被引量:12
标识
DOI:10.1088/1361-6560/ab652a
摘要

The heart is an important organ at risk during thoracic radiotherapy. Many studies have demonstrated a correlation between the mean heart dose and an increase in cardiovascular disease. Different treatments result in significant dose variation within the heart and individualised dose estimation increasingly requires more attention to delineation of various cardiac structures. Automatic segmentation tools are critical for consistent and accurate delineation of organs at risk in large, retrospective studies, however the challenge of ensuring a robust method must be addressed. In a multi-atlas based segmentation framework the uncertainty in delineation can be modelled over the surface of the heart. We extend this concept with an iterative atlas selection procedure designed to remove inconsistent atlas contours, in turn improving the reliability of the segmentation. Two independent datasets comprising 15 and 20 planning computed tomography (CT) images of Danish and Australian breast cancer patients, respectively, had the whole heart and left anterior descending coronary artery (LADCA) delineated. Using a cross-validation strategy, where each dataset is used as an atlas set to segment each image in the other, we assess segmentation performance qualitatively and quantitatively, using the dice similarity coefficient (DSC), mean surface-to-surface distance (MASD) and Hausdorff distance (HD). After using the iterative atlas selection procedure, every segmentation error was removed. For the whole heart, the resulting segmentation achieved a DSC, MASD and HD of [Formula: see text], [Formula: see text] mm, and [Formula: see text] mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YeeBohr发布了新的文献求助10
刚刚
Aurora.H完成签到,获得积分10
2秒前
英俊雅柏应助lizhiqian2024采纳,获得10
3秒前
乐乐应助无敌大洲洲采纳,获得10
4秒前
顺利毕业mpa完成签到,获得积分10
7秒前
香蕉冬云完成签到 ,获得积分10
7秒前
vikey完成签到 ,获得积分10
8秒前
maxthon完成签到,获得积分10
8秒前
细心笑卉完成签到 ,获得积分10
9秒前
RATHER完成签到,获得积分10
9秒前
LLL完成签到 ,获得积分10
12秒前
李伟完成签到,获得积分10
13秒前
15秒前
MYMELODY完成签到,获得积分10
15秒前
闲鱼嫌鱼咸完成签到,获得积分10
18秒前
djf103发布了新的文献求助10
20秒前
瘦瘦冰枫发布了新的文献求助10
22秒前
Benjamin完成签到 ,获得积分10
26秒前
yhz完成签到,获得积分10
29秒前
Yy完成签到 ,获得积分10
30秒前
33秒前
33秒前
土豪的土豆完成签到 ,获得积分10
34秒前
李健应助可可采纳,获得10
36秒前
36秒前
lemongulf完成签到 ,获得积分10
39秒前
ikun0000完成签到,获得积分10
39秒前
qqqxl完成签到,获得积分10
40秒前
瘦瘦冰枫完成签到,获得积分10
41秒前
无敌大洲洲完成签到,获得积分10
44秒前
二巨头完成签到,获得积分10
44秒前
舒心豪英完成签到 ,获得积分10
44秒前
YeeBohr完成签到,获得积分20
45秒前
故酒应助ncuwzq采纳,获得10
49秒前
隐形曼青应助lizhiqian2024采纳,获得10
53秒前
ergatoid完成签到,获得积分10
56秒前
genomed举报ding求助涉嫌违规
57秒前
派大星完成签到,获得积分10
57秒前
1分钟前
Zeeki完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726