Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning

医学 糖尿病性视网膜病变 人工智能 眼底(子宫) 深度学习 置信区间 预测值 黄斑水肿 视网膜 眼科 视网膜病变 机器学习 内科学 糖尿病 计算机科学 内分泌学
作者
Michael D. Abràmoff,Yiyue Lou,Ali Erginay,Warren Clarida,Ryan Amelon,James C. Folk,Meindert Niemeijer
出处
期刊:Investigative Ophthalmology & Visual Science [Cadmus Press]
卷期号:57 (13): 5200-5200 被引量:939
标识
DOI:10.1167/iovs.16-19964
摘要

Purpose: To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)–without deep learning components–on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. Methods: We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. Results: Sensitivity was 96.8% (95% CI: 93.3%–98.8%), specificity was 87.0% (95% CI: 84.2%–89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%–99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968–0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. Conclusions: A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
will完成签到 ,获得积分10
刚刚
复杂的保温杯完成签到 ,获得积分10
1秒前
2秒前
孙俪发布了新的文献求助10
2秒前
luoshikun发布了新的文献求助10
2秒前
粗暴的乐巧完成签到,获得积分10
3秒前
4秒前
科研通AI5应助ju龙哥采纳,获得10
4秒前
qingsong完成签到,获得积分10
5秒前
不倦发布了新的文献求助10
7秒前
8秒前
8秒前
FashionBoy应助hhh334采纳,获得10
8秒前
djbj2022发布了新的文献求助10
9秒前
小一发布了新的文献求助10
10秒前
11秒前
13秒前
13秒前
13秒前
hp571发布了新的文献求助10
14秒前
Zion完成签到,获得积分10
15秒前
科研通AI5应助不倦采纳,获得10
15秒前
现实的觅波完成签到,获得积分10
16秒前
16秒前
方寸发布了新的文献求助10
17秒前
文安发布了新的文献求助10
17秒前
科研通AI5应助小一采纳,获得10
18秒前
苹果发布了新的文献求助10
18秒前
ju龙哥发布了新的文献求助10
18秒前
19秒前
hhm发布了新的文献求助10
20秒前
今后应助FCL采纳,获得10
21秒前
21秒前
dnbe完成签到 ,获得积分10
22秒前
22秒前
赘婿应助小小技术工采纳,获得10
24秒前
愉快雅山发布了新的文献求助10
24秒前
雨石完成签到,获得积分10
25秒前
25秒前
火星上如松完成签到,获得积分10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793457
求助须知:如何正确求助?哪些是违规求助? 3338316
关于积分的说明 10289420
捐赠科研通 3054869
什么是DOI,文献DOI怎么找? 1676193
邀请新用户注册赠送积分活动 804208
科研通“疑难数据库(出版商)”最低求助积分说明 761789