Learning Rotation-Invariant Local Binary Descriptor

模式识别(心理学) 人工智能 局部二进制模式 直方图 特征提取 不变(物理) 计算机科学 二进制数 二进制代码 特征学习 数学 计算机视觉 图像(数学) 数学物理 算术
作者
Yueqi Duan,Jiwen Lu,Jianjiang Feng,Jie Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:59
标识
DOI:10.1109/tip.2017.2704661
摘要

In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旗树树完成签到,获得积分10
刚刚
LZS完成签到,获得积分10
1秒前
吃的饭广泛应助石龙子采纳,获得10
1秒前
王小冉发布了新的文献求助10
1秒前
zmnzmnzmn发布了新的文献求助10
1秒前
科研通AI5应助QOP采纳,获得30
2秒前
万能图书馆应助li采纳,获得10
3秒前
solitaty发布了新的文献求助10
3秒前
lqqqq完成签到,获得积分20
3秒前
4秒前
exosome完成签到,获得积分10
5秒前
5秒前
搞甚完成签到,获得积分10
5秒前
隐形曼青应助付冀川采纳,获得10
5秒前
Vivian完成签到,获得积分10
6秒前
7秒前
小萝卜睿睿完成签到,获得积分20
7秒前
sasa发布了新的文献求助10
7秒前
Catalina完成签到,获得积分10
8秒前
酷波er应助songf11采纳,获得10
8秒前
Cynthia发布了新的文献求助10
9秒前
NiKo完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
11秒前
闲听花落完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
Mss完成签到,获得积分10
13秒前
研友_8RlQ2n完成签到,获得积分10
14秒前
solitaty完成签到,获得积分10
14秒前
14秒前
haku驳回了Orange应助
15秒前
现代世德完成签到,获得积分10
15秒前
MARSDON发布了新的文献求助10
15秒前
蕃薯叶应助王小冉采纳,获得10
15秒前
fool发布了新的文献求助10
15秒前
科研通AI5应助王小冉采纳,获得10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910