A deep learning model for the detection of both advanced and early glaucoma using fundus photography

卷积神经网络 人工智能 青光眼 接收机工作特性 眼底摄影 深度学习 计算机科学 眼底(子宫) 试验数据 逻辑回归 人工神经网络 模式识别(心理学) 机器学习 医学 眼科 视网膜 程序设计语言 荧光血管造影
作者
Jin Mo Ahn,Sangsoo Kim,Kwang-Sung Ahn,Sunghoon Cho,Kwan Bok Lee,Ungsoo Samuel Kim
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:13 (11): e0207982-e0207982 被引量:212
标识
DOI:10.1371/journal.pone.0207982
摘要

To build a deep learning model to diagnose glaucoma using fundus photography.Cross sectional case study Subjects, Participants and Controls: A total of 1,542 photos (786 normal controls, 467 advanced glaucoma and 289 early glaucoma patients) were obtained by fundus photography.The whole dataset of 1,542 images were split into 754 training, 324 validation and 464 test datasets. These datasets were used to construct simple logistic classification and convolutional neural network using Tensorflow. The same datasets were used to fine tune pre-trained GoogleNet Inception v3 model.The simple logistic classification model showed a training accuracy of 82.9%, validation accuracy of 79.9% and test accuracy of 77.2%. Convolutional neural network achieved accuracy and area under the receiver operating characteristic curve (AUROC) of 92.2% and 0.98 on the training data, 88.6% and 0.95 on the validation data, and 87.9% and 0.94 on the test data. Transfer-learned GoogleNet Inception v3 model achieved accuracy and AUROC of 99.7% and 0.99 on training data, 87.7% and 0.95 on validation data, and 84.5% and 0.93 on test data.Both advanced and early glaucoma could be correctly detected via machine learning, using only fundus photographs. Our new model that is trained using convolutional neural network is more efficient for the diagnosis of early glaucoma than previously published models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦田守望者完成签到,获得积分10
刚刚
坦率的匪应助木头鱼采纳,获得10
2秒前
2秒前
Silvia完成签到,获得积分10
3秒前
xianyu发布了新的文献求助10
3秒前
梁33发布了新的文献求助80
5秒前
小鬼1004完成签到,获得积分20
5秒前
6秒前
111完成签到,获得积分10
6秒前
6秒前
lzd完成签到,获得积分10
7秒前
hucaicai完成签到,获得积分10
7秒前
10秒前
陆小凤发布了新的文献求助10
11秒前
cookie发布了新的文献求助100
14秒前
转生成书完成签到,获得积分10
14秒前
yy给yy的求助进行了留言
16秒前
16秒前
Owen应助郝岩采纳,获得10
16秒前
Adzuki0812发布了新的文献求助10
17秒前
17秒前
文献求助人完成签到,获得积分10
18秒前
素笺发布了新的文献求助10
23秒前
ding应助Zhoey采纳,获得10
23秒前
小耳朵完成签到,获得积分10
24秒前
不会失忆完成签到,获得积分10
24秒前
www发布了新的文献求助20
26秒前
26秒前
深情安青应助123采纳,获得20
28秒前
华仔应助科研通管家采纳,获得10
29秒前
木木应助科研通管家采纳,获得50
29秒前
木木应助科研通管家采纳,获得30
29秒前
29秒前
共享精神应助科研通管家采纳,获得10
29秒前
29秒前
yar应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
yar应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062952
求助须知:如何正确求助?哪些是违规求助? 3601444
关于积分的说明 11437967
捐赠科研通 3324713
什么是DOI,文献DOI怎么找? 1827766
邀请新用户注册赠送积分活动 898335
科研通“疑难数据库(出版商)”最低求助积分说明 818997