Locally Weighted Ensemble Clustering

聚类分析 加权 计算机科学 数据挖掘 利用 集成学习 共识聚类 星团(航天器) 机器学习 人工智能 基础(拓扑) 模式识别(心理学) 相关聚类 数学 CURE数据聚类算法 数学分析 放射科 医学 计算机安全 程序设计语言
作者
Dong Huang,Chang‐Dong Wang,Jianhuang Lai
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:48 (5): 1460-1473 被引量:328
标识
DOI:10.1109/tcyb.2017.2702343
摘要

Due to its ability to combine multiple base clusterings into a probably better and more robust clustering, the ensemble clustering technique has been attracting increasing attention in recent years. Despite the significant success, one limitation to most of the existing ensemble clustering methods is that they generally treat all base clusterings equally regardless of their reliability, which makes them vulnerable to low-quality base clusterings. Although some efforts have been made to (globally) evaluate and weight the base clusterings, yet these methods tend to view each base clustering as an individual and neglect the local diversity of clusters inside the same base clustering. It remains an open problem how to evaluate the reliability of clusters and exploit the local diversity in the ensemble to enhance the consensus performance, especially in the case when there is no access to data features or specific assumptions on data distribution. To address this, in this paper, we propose a novel ensemble clustering approach based on ensemble-driven cluster uncertainty estimation and local weighting strategy. In particular, the uncertainty of each cluster is estimated by considering the cluster labels in the entire ensemble via an entropic criterion. A novel ensemble-driven cluster validity measure is introduced, and a locally weighted co-association matrix is presented to serve as a summary for the ensemble of diverse clusters. With the local diversity in ensembles exploited, two novel consensus functions are further proposed. Extensive experiments on a variety of real-world datasets demonstrate the superiority of the proposed approach over the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
amber完成签到 ,获得积分10
3秒前
科研小白完成签到,获得积分10
11秒前
FUNG完成签到 ,获得积分10
18秒前
木又完成签到 ,获得积分10
20秒前
Lu完成签到 ,获得积分10
21秒前
玉yu完成签到 ,获得积分10
29秒前
居然是我完成签到,获得积分10
32秒前
32秒前
dd完成签到 ,获得积分10
34秒前
白日焰火完成签到 ,获得积分10
34秒前
白昼の月完成签到 ,获得积分0
37秒前
兔兔完成签到 ,获得积分10
40秒前
42秒前
shyxia完成签到 ,获得积分10
43秒前
53秒前
56秒前
iceburg发布了新的文献求助10
58秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
59秒前
1分钟前
nannan完成签到 ,获得积分10
1分钟前
兜兜揣满糖完成签到 ,获得积分10
1分钟前
666完成签到 ,获得积分10
1分钟前
btcat完成签到,获得积分10
1分钟前
Research完成签到 ,获得积分10
1分钟前
沉静野狼完成签到,获得积分10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
1分钟前
Emma完成签到 ,获得积分10
1分钟前
最美夕阳红完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
1分钟前
奥斯卡完成签到,获得积分0
1分钟前
lielizabeth完成签到 ,获得积分0
1分钟前
怡心亭完成签到 ,获得积分0
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840870
求助须知:如何正确求助?哪些是违规求助? 3382770
关于积分的说明 10526510
捐赠科研通 3102624
什么是DOI,文献DOI怎么找? 1708930
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632