Unsupervised Spatial–Spectral Feature Learning by 3D Convolutional Autoencoder for Hyperspectral Classification

高光谱成像 自编码 模式识别(心理学) 人工智能 计算机科学 特征(语言学) 特征学习 无监督学习 规范化(社会学) 特征提取 卷积神经网络 深度学习 人类学 语言学 哲学 社会学
作者
Shaohui Mei,Jingyu Ji,Yunhao Geng,Zhi Zhang,Li Xu,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (9): 6808-6820 被引量:279
标识
DOI:10.1109/tgrs.2019.2908756
摘要

Feature learning technologies using convolutional neural networks (CNNs) have shown superior performance over traditional hand-crafted feature extraction algorithms. However, a large number of labeled samples are generally required for CNN to learn effective features under classification task, which are hard to be obtained for hyperspectral remote sensing images. Therefore, in this paper, an unsupervised spatial-spectral feature learning strategy is proposed for hyperspectral images using 3-Dimensional (3D) convolutional autoencoder (3D-CAE). The proposed 3D-CAE consists of 3D or elementwise operations only, such as 3D convolution, 3D pooling, and 3D batch normalization, to maximally explore spatial-spectral structure information for feature extraction. A companion 3D convolutional decoder network is also designed to reconstruct the input patterns to the proposed 3D-CAE, by which all the parameters involved in the network can be trained without labeled training samples. As a result, effective features are learned in an unsupervised mode that label information of pixels is not required. Experimental results on several benchmark hyperspectral data sets have demonstrated that our proposed 3D-CAE is very effective in extracting spatial-spectral features and outperforms not only traditional unsupervised feature extraction algorithms but also many supervised feature extraction algorithms in classification application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liu发布了新的文献求助10
刚刚
xzy998发布了新的文献求助10
刚刚
852应助科研通管家采纳,获得10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
wkjfh应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
AAA完成签到,获得积分10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得30
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
tingalan应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
wkjfh应助科研通管家采纳,获得20
1秒前
淡定元珊完成签到,获得积分10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
浮游应助lt0217采纳,获得10
2秒前
2秒前
ttc完成签到,获得积分10
2秒前
2秒前
3秒前
123发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
科目三应助123456采纳,获得30
5秒前
6秒前
wyd发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886614
求助须知:如何正确求助?哪些是违规求助? 4171581
关于积分的说明 12945506
捐赠科研通 3932118
什么是DOI,文献DOI怎么找? 2157468
邀请新用户注册赠送积分活动 1175901
关于科研通互助平台的介绍 1080389