亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Measuring Algorithmic Fairness

假阳性悖论 规范性 计算机科学 担心 度量(数据仓库) 奇偶性(物理) 群众 心理学 社会心理学 人工智能 数据挖掘 法学 政治学 焦虑 物理 精神科 粒子物理学
作者
Deborah Hellman
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
卷期号:106: 811-866 被引量:82
摘要

Algorithmic decision making is both increasingly common and increasingly controversial. Critics worry that algorithmic tools are not transparent, accountable or fair. Assessing the fairness of these tools has been especially fraught as it requires that we agree about what fairness is and what it entails. Unfortunately, we do not. The technological literature is now littered with a multitude of measures, each purporting to assess fairness along some dimension. Two types of measures stand out. According to one, algorithmic fairness requires that the score an algorithm produces should be equally accurate for members of legally protected groups, blacks and whites for example. According to the other, algorithmic fairness requires that the algorithm produces the same percentage of false positives or false negatives for each of the groups at issue. Unfortunately, there is often no way to achieve parity in both these dimensions. This fact has led to a pressing question. Which type of measure should we prioritize and why? This Article makes three contributions to the debate about how best to measure algorithmic fairness: one conceptual, one normative, and one legal. Equal predictive accuracy ensures that a score means the same thing for each group at issue. As such, it relates to what one ought to believe about a scored individual. Because questions of fairness usually relate to action not belief, this measure is ill-suited as a measure of fairness. This is the Article’s conceptual contribution. Second, this Article argues that parity in the ratio of false positives to false negatives is a normatively significant measure. While a lack of parity in this dimension is not constitutive of unfairness, this measure provides important reasons to suspect that unfairness exists. This is the Article’s normative contribution. Interestingly, improving the accuracy of algorithms overall will lessen this unfairness. Unfortunately, a common assumption that antidiscrimination law prohibits the use of racial and other protected classifications in all contexts is inhibiting those who design algorithms from making them as fair and accurate as possible. This Article’s third contribution is to show that the law poses less of a barrier than many assume.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuan完成签到 ,获得积分10
4秒前
8秒前
shimly0101xx发布了新的文献求助10
12秒前
12秒前
开放道天发布了新的文献求助10
18秒前
24秒前
MchemG应助科研通管家采纳,获得200
28秒前
28秒前
32秒前
52秒前
56秒前
1分钟前
1分钟前
YCCC完成签到,获得积分10
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
晨云完成签到,获得积分10
1分钟前
1分钟前
耿耿完成签到,获得积分10
1分钟前
1分钟前
耿耿发布了新的文献求助10
1分钟前
1分钟前
caca完成签到,获得积分0
1分钟前
1分钟前
YCCC发布了新的文献求助10
1分钟前
1分钟前
ok完成签到,获得积分10
2分钟前
小湛湛完成签到 ,获得积分10
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
2分钟前
希望天下0贩的0应助QQWQEQRQ采纳,获得10
2分钟前
Lucas应助sss采纳,获得10
2分钟前
2分钟前
2分钟前
QQWQEQRQ发布了新的文献求助10
2分钟前
sss完成签到,获得积分20
2分钟前
孤独的不凡应助QQWQEQRQ采纳,获得20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617027
求助须知:如何正确求助?哪些是违规求助? 4701398
关于积分的说明 14913514
捐赠科研通 4748350
什么是DOI,文献DOI怎么找? 2549251
邀请新用户注册赠送积分活动 1512325
关于科研通互助平台的介绍 1474080