Recursive Exponential Slow Feature Analysis for Fine-Scale Adaptive Processes Monitoring With Comprehensive Operation Status Identification

过程(计算) 计算机科学 故障检测与隔离 特征(语言学) 补偿(心理学) 控制理论(社会学) 鉴定(生物学) 假警报 比例(比率) 恒虚警率 控制(管理) 算法 人工智能 心理学 语言学 哲学 植物 物理 量子力学 精神分析 执行机构 生物 操作系统
作者
Wanke Yu,Chunhui Zhao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:15 (6): 3311-3323 被引量:130
标识
DOI:10.1109/tii.2018.2878405
摘要

Due to the compensation of the control loops, industrial processes under feedback control generally reveal typical dynamic behaviors for different operation statuses. Conventional adaptive methods may update model falsely and thus result in invalid monitoring results, since they cannot effectively extract the feedback dynamic information and fail to accurately differentiate real anomalies from normal process changes. In this study, a recursive exponential slow feature analysis (ESFA) algorithm is developed for fine-scale adaptive monitoring to solve the problem of false model updating. First, an ESFA method is proposed to nonlinearly extract slow features, so that the general trend of the process variations can be better captured. On the basis of the ESFA model, a fine-scale adaptive monitoring scheme is developed to accurately capture the normal changes of industrial processes, including normal slow varying and normal shift of operation conditions. In this way, the normal slow varying can be effectively distinguished from incipient faults with unusual dynamic behaviors to avoid falsely adapting for the fault case, and the monitoring model can be correctly updated for new operation status after distinguishing real process anomalies from normal shifts of operation conditions. A simulation process and two real industrial processes are adopted to validate the performance of the proposed adaptive monitoring method. Experimental results show that the proposed method can effectively identify different operation statuses to decide whether to update the monitoring model or to raise an alarm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LW完成签到,获得积分10
1秒前
Ava应助LHYoung采纳,获得30
1秒前
wahaha完成签到 ,获得积分10
2秒前
2秒前
hanxiao完成签到,获得积分10
4秒前
冲刺的仙人掌完成签到,获得积分10
5秒前
田様应助ywhys采纳,获得10
6秒前
Yzz完成签到,获得积分10
7秒前
9秒前
10秒前
火星仙人掌发布了新的文献求助150
12秒前
12秒前
谦让小丸子完成签到,获得积分10
14秒前
15秒前
tango完成签到,获得积分10
15秒前
16秒前
ZZQ发布了新的文献求助10
17秒前
打打应助fatcat采纳,获得30
18秒前
RHJ完成签到 ,获得积分10
18秒前
星辰大海应助Return采纳,获得10
19秒前
Adeline完成签到,获得积分10
20秒前
tango发布了新的文献求助10
21秒前
ywhys发布了新的文献求助10
21秒前
记得接电话完成签到,获得积分10
22秒前
FashionBoy应助qiulong采纳,获得10
23秒前
23秒前
科研通AI2S应助Allough采纳,获得10
24秒前
zzx完成签到,获得积分10
24秒前
hygge完成签到,获得积分10
24秒前
月亮快打烊吖完成签到 ,获得积分10
24秒前
开心的秋寒完成签到,获得积分10
25秒前
26秒前
务实天德完成签到,获得积分10
27秒前
27秒前
冷艳的孤晴完成签到,获得积分10
29秒前
29秒前
Cpp完成签到,获得积分10
29秒前
白天亮完成签到,获得积分10
31秒前
33秒前
张欣童666发布了新的文献求助10
34秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451