Machine Learning Based Twitter Spam Account Detection: A Review

计算机科学 人工智能 机器学习 朴素贝叶斯分类器 支持向量机 垃圾邮件程序 社会化媒体 垃圾邮件 情绪分析 论坛垃圾邮件 分类器(UML) 统计分类
作者
Shivangi Gheewala,Rakesh Patel
出处
期刊:International Conference Computing Methodologies and Communication 被引量:11
标识
DOI:10.1109/iccmc.2018.8487992
摘要

Online social networks (OSNs) are emerging communication medium for people to establish and manage social relationships. In OSNs, regularly billions of users are involved in social interaction, content and opinion dissemination, networking, recommendations, scouting, alerting, and social campaigns. The popularization of OSNs open up a new perspectives and challenges to the study of social networks, being of interest to many fields. Social network is a place where social activities, business oriented activities, entertainment, and information are exchanged. It establish a worldwide connectivity environment where communities of people share their interests and activities, or who are interested in interests and activities of others Although social network has given immense benefits to people at the same time harming people with various mischievous activities that take place on social platforms. This causes significant economic loss to our society and even threaten the national security. All the social networks Facebook, Twitter, LinkedIn, etc. are highly susceptible to malware activities. Twitter is one of the biggest microblogging networking platform, it has more than half a billion tweets are posted every day in average by millions of users on Twitter. Such a versatility and wide spread of use, Twitter easily get intruded with malicious activities. Malicious activities includes malware intrusion, spam distribution, social attacks, etc. Spammers use social engineering attack strategy to send spam tweets, spam URLs, etc. This made twitter an ideal arena for proliferation of anomalous spam accounts. The impact stimulates researchers to develop a model that analyze, detects and recovers from defamatory actions in twitter. Twitter network is inundated with tens of millions of fake spam profiles which may jeopardize the normal user’s security and privacy. To improve real users safety and identification of spam profiles become key parts of the research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
贝壳完成签到,获得积分10
2秒前
勇者先享受生活完成签到 ,获得积分10
3秒前
核动力牛马完成签到,获得积分10
4秒前
5秒前
5秒前
beichuanheqi完成签到,获得积分10
5秒前
jw完成签到,获得积分10
6秒前
棕熊熊应助looocc采纳,获得10
6秒前
8秒前
8秒前
xuan发布了新的文献求助10
8秒前
9秒前
呆呆完成签到,获得积分10
10秒前
chujun完成签到,获得积分10
10秒前
风中的双发布了新的文献求助10
10秒前
11秒前
12秒前
情怀应助飘逸初蓝采纳,获得10
12秒前
13秒前
平常的毛豆应助gugugaga采纳,获得10
14秒前
14秒前
14秒前
小刘完成签到,获得积分10
14秒前
14秒前
月明光发布了新的文献求助10
15秒前
斯文败类应助maomao采纳,获得10
15秒前
15秒前
生动的煎蛋完成签到 ,获得积分10
16秒前
贝壳发布了新的文献求助30
16秒前
HeyHsc完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
sym发布了新的文献求助10
17秒前
潮哈哈耶完成签到,获得积分20
17秒前
lv完成签到,获得积分10
19秒前
hejing完成签到,获得积分10
19秒前
20秒前
潘森爱科研完成签到,获得积分10
20秒前
英俊的铭应助光亮的雅柏采纳,获得10
21秒前
对方正在看文献完成签到,获得积分10
21秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876473
求助须知:如何正确求助?哪些是违规求助? 3419060
关于积分的说明 10711836
捐赠科研通 3143722
什么是DOI,文献DOI怎么找? 1734545
邀请新用户注册赠送积分活动 836833
科研通“疑难数据库(出版商)”最低求助积分说明 782823