Deep neural network with high‐order neuron for the prediction of foamed concrete strength

人工神经网络 抗压强度 激活函数 计算机科学 试验数据 灵敏度(控制系统) 人工智能 机器学习 工程类 材料科学 电子工程 复合材料 程序设计语言
作者
Tuan Ngoc Nguyen,Alireza Kashani,Tuan Ngo,Stéphane Bordas
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:34 (4): 316-332 被引量:234
标识
DOI:10.1111/mice.12422
摘要

Abstract The article presents a deep neural network model for the prediction of the compressive strength of foamed concrete. A new, high‐order neuron was developed for the deep neural network model to improve the performance of the model. Moreover, the cross‐entropy cost function and rectified linear unit activation function were employed to enhance the performance of the model. The present model was then applied to predict the compressive strength of foamed concrete through a given data set, and the obtained results were compared with other machine learning methods including conventional artificial neural network (C‐ANN) and second‐order artificial neural network (SO‐ANN). To further validate the proposed model, a new data set from the laboratory and a given data set of high‐performance concrete were used to obtain a higher degree of confidence in the prediction. It is shown that the proposed model obtained a better prediction, compared to other methods. In contrast to C‐ANN and SO‐ANN, the proposed model can genuinely improve its performance when training a deep neural network model with multiple hidden layers. A sensitivity analysis was conducted to investigate the effects of the input variables on the compressive strength. The results indicated that the compressive strength of foamed concrete is greatly affected by density, followed by the water‐to‐cement and sand‐to‐cement ratios. By providing a reliable prediction tool, the proposed model can aid researchers and engineers in mixture design optimization of foamed concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ToCell发布了新的文献求助10
刚刚
刚刚
1秒前
lhy完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
sun发布了新的文献求助10
5秒前
科研通AI6.1应助kk采纳,获得10
6秒前
6秒前
在水一方应助drama_queen采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
Jasper应助Gyr060307采纳,获得10
8秒前
桐桐应助fffbl采纳,获得10
8秒前
爆米花应助sun采纳,获得10
9秒前
乐乐应助骤雨红尘采纳,获得10
10秒前
清淮发布了新的文献求助10
10秒前
英俊的铭应助风语村采纳,获得10
11秒前
请做我的窦房结完成签到,获得积分10
11秒前
科研通AI6.1应助天天开心采纳,获得10
12秒前
充电宝应助勤奋曼雁采纳,获得10
14秒前
FashionBoy应助CC采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
冉纯菲完成签到,获得积分10
18秒前
Akim应助张均旗采纳,获得10
18秒前
18秒前
量子星尘发布了新的文献求助10
21秒前
zz发布了新的社区帖子
21秒前
ASUKA发布了新的文献求助10
21秒前
Gyr060307发布了新的文献求助10
21秒前
crazyfish完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770469
求助须知:如何正确求助?哪些是违规求助? 5585240
关于积分的说明 15424252
捐赠科研通 4904062
什么是DOI,文献DOI怎么找? 2638468
邀请新用户注册赠送积分活动 1586331
关于科研通互助平台的介绍 1541406