Robust steel surface defect detection with edge-aware-semantic collaboration and efficient distillation network

计算机科学 杠杆(统计) GSM演进的增强数据速率 特征(语言学) 加权 人工智能 粒度 代表(政治) 一元运算 水准点(测量) 蒸馏 概化理论 边缘设备 曲面(拓扑) 遗忘 刮擦 保险丝(电气) 资本投资 特征提取 比例(比率) 稳健性(进化) 语义特征 融合 模式识别(心理学) 数据挖掘 分布式计算
作者
Xueqian Li,Huapan Xiao,Heng Wu,Shaojuan Luo
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:37 (3): 036113-036113
标识
DOI:10.1088/1361-6501/ae2ef0
摘要

Abstract Steel is a critical material for modern infrastructure, vehicles, and industrial equipment, driving the development of sectors including construction, manufacturing, and transportation. Surface defects on steel degrade both its mechanical properties and corrosion resistance, potentially causing structural failure or reduced service life. Current methods often struggle to delineate the indistinct boundaries of blurred defects, resulting in insufficient precision and high false-negative rates. To address these issues, we propose an edge-aware edge-semantic collaboration and efficient distillation network (3ESNet) for steel surface defect detection. To overcome the limitations in handling blurred boundaries and leverage complementary information, we develop an edge-aware feature fusion backbone within 3ESNet, which adaptively integrates edge and semantic streams for enhanced edge-sensitive feature extraction. Concurrently, to address scale variations and fragmentation, we design a dynamic edge-semantic FPN to employ adaptive weighting and multi-scale semantic fusion for robust feature integration. Moreover, a spatial attention module is constructed in 3ESNet to enhance the representation of high-level semantics. Finally, to improve accuracy without increasing model complexity or computation, we devise multi-decoder logical distillation to enable 3ESNet to achieve superior accuracy while preserving its lightweight design. Experiments on NEU-DET, GC10-DET, and APSDD datasets demonstrate that 3ESNet achieves 79.7% AP50 on NEU-DET with 16.1M parameters and 44.2 GFLOPs. Compared to advanced methods like D-FINE and YOLOv11, 3ESNet demonstrates higher accuracy, efficiency, and generalizability across diverse industrial scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
中和皇极应助mao采纳,获得10
刚刚
传奇3应助大方小白采纳,获得10
刚刚
1秒前
害羞山菡发布了新的文献求助10
1秒前
FashionBoy应助缥缈的小夏采纳,获得10
1秒前
1秒前
化学学渣发布了新的文献求助10
1秒前
科研通AI6应助失眠静珊采纳,获得10
1秒前
mikasa应助cstp采纳,获得10
2秒前
斯文败类应助wtjhhh采纳,获得10
2秒前
2秒前
小小完成签到 ,获得积分10
3秒前
乐乐应助科研狗哈哈采纳,获得10
3秒前
zwy完成签到,获得积分10
3秒前
4秒前
Ava应助可爱的弘文采纳,获得10
4秒前
4秒前
4秒前
张博艺发布了新的文献求助10
4秒前
传奇3应助李离子采纳,获得10
4秒前
www发布了新的文献求助10
5秒前
36456657应助youlinn采纳,获得10
5秒前
5秒前
JamesPei应助slby采纳,获得10
5秒前
2go完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
zhucan给无辜铃铛的求助进行了留言
6秒前
7秒前
7秒前
温茶青盏发布了新的文献求助10
7秒前
星辰大海应助Hui_2023采纳,获得10
8秒前
8秒前
8秒前
9秒前
科研通AI6应助SUN采纳,获得10
9秒前
RDH发布了新的文献求助10
9秒前
欣慰的亦绿完成签到,获得积分10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619809
求助须知:如何正确求助?哪些是违规求助? 4704349
关于积分的说明 14927602
捐赠科研通 4760460
什么是DOI,文献DOI怎么找? 2550657
邀请新用户注册赠送积分活动 1513453
关于科研通互助平台的介绍 1474498