数学
订单(交换)
代数数
规范(哲学)
空格(标点符号)
组合数学
数学分析
数学物理
法学
财务
政治学
语言学
哲学
经济
作者
María E. Schonbek,Tomas Schonbek
标识
DOI:10.57262/ade/1356651290
摘要
In this paper we consider the existence and decay of moments of the solutions to the Navier-Stokes equations in the whole space ${{\bf R}^n}$; $n \geq 2$ for existence, $2 \leq n \leq 5$ for decay. The decay obtained is algebraic, of order \[ \int_{{{\bf R}^n}} |x|^k |u|^2\,dx \leq C(t+1)^{-2\mu(1-k/n)} \] for $0\leq k\leq n$, for solutions $u$ of appropriate data for which the $L^2$ norm decays at a rate of order $\mu$. That is for solutions that satisfy $||u(t)||_2 \leq C(t+1) ^{-\mu}$. Where $\mu >1/2$. Such solutions are easy to obtain as for example it suffices for $n=3$ that the data $u_0$ is in $L^2 \cap L^1$.
科研通智能强力驱动
Strongly Powered by AbleSci AI