Photocatalytic degradation of (micro)plastics using TiO2-based and other catalysts: Properties, influencing factor, and mechanism

光催化 降级(电信) 光降解 材料科学 矿化(土壤科学) 聚合物 催化作用 化学工程 纳米技术 化学 复合材料 有机化学 计算机科学 电信 工程类 氮气
作者
Jianhua Ge,Zhiping Zhang,Zhuozhi Ouyang,Mengxin Shang,Peng Liu,Huang Li,Xuetao Guo
出处
期刊:Environmental Research [Elsevier]
卷期号:209: 112729-112729 被引量:35
标识
DOI:10.1016/j.envres.2022.112729
摘要

(Micro)plastics pollution has raised global concern because of its potential threat to the biota. The review on recent developments of photocatalytic degradation of (micro)plastics is still insufficient. In this study, we have discussed various bare and composites photocatalysts involved in the photocatalytic degradation of (micro)plastics. The photocatalytic mechanisms and factors affecting the degradation were also discussed. To improve the performance of photocatalysts, their surface is modified with metal or non-metal dopants. These doped photocatalysts are then compounded with a variety of environmentally friendly and nontoxic polymers to prepare multifunctional composites. The generation of reactive oxygen species (ROS) plays an important role in the photocatalytic degradation of (micro)plastics, and superoxide ions (O2-) and hydroxyl radicals (OH) participate in the photocatalytic degradation, leading to the breaking of the polymer chain and the production of some intermediates. Although satisfactory progress has been achieved in the photodegradation of (micro)plastics, most photocatalytic degradation technologies investigated to date cannot realize the complete mineralization of (micro)plastics. Furthermore, based on the current challenges of the existing photocatalytic degradation technologies, perspectives for future research directions have been proposed. This review presents a systematic summary of the progress made in the photocatalytic degradation of (micro)plastics and offers a comprehensive reference for future research on improving the (micro)plastics photocatalytic degradation efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
端庄不愁完成签到,获得积分10
刚刚
ruochenzu发布了新的文献求助10
刚刚
SciGPT应助成就半双采纳,获得10
2秒前
psy学子完成签到 ,获得积分10
2秒前
科研小白完成签到,获得积分10
3秒前
Ninico发布了新的文献求助10
4秒前
调皮时光发布了新的文献求助10
6秒前
田様应助科研通管家采纳,获得10
6秒前
SOLOMON应助科研通管家采纳,获得10
6秒前
若水应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
互助遵法尚德应助zszzzsss采纳,获得10
6秒前
TTTaT完成签到,获得积分10
7秒前
8秒前
8秒前
野性的悒完成签到,获得积分10
10秒前
万能图书馆应助老实半邪采纳,获得10
10秒前
10秒前
汉堡包应助kk采纳,获得10
11秒前
哆啦A梦完成签到,获得积分10
11秒前
烟花应助日渐消瘦采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
lvyounghui发布了新的文献求助10
14秒前
COCO完成签到,获得积分10
14秒前
Wei完成签到,获得积分10
16秒前
16秒前
16秒前
gu完成签到,获得积分10
17秒前
仁爱巧荷完成签到,获得积分10
17秒前
iuytg发布了新的文献求助10
18秒前
19秒前
19秒前
ginny完成签到,获得积分10
19秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2409601
求助须知:如何正确求助?哪些是违规求助? 2105411
关于积分的说明 5317838
捐赠科研通 1832907
什么是DOI,文献DOI怎么找? 913287
版权声明 560765
科研通“疑难数据库(出版商)”最低求助积分说明 488351