Automated Atrial Fibrillation Classification Based on Denoising Stacked Autoencoder and Optimized Deep Network

自编码 卷积神经网络 人工智能 深度学习 计算机科学 模式识别(心理学) 人工神经网络 灵敏度(控制系统) 降噪 噪音(视频) 工程类 图像(数学) 电子工程
作者
Rajesh Singh,Ambalika Sharma,Shreesha Maiya
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2202.05177
摘要

The incidences of atrial fibrillation (AFib) are increasing at a daunting rate worldwide. For the early detection of the risk of AFib, we have developed an automatic detection system based on deep neural networks. For achieving better classification, it is mandatory to have good pre-processing of physiological signals. Keeping this in mind, we have proposed a two-fold study. First, an end-to-end model is proposed to denoise the electrocardiogram signals using denoising autoencoders (DAE). To achieve denoising, we have used three networks including, convolutional neural network (CNN), dense neural network (DNN), and recurrent neural networks (RNN). Compared the three models and CNN based DAE performance is found to be better than the other two. Therefore, the signals denoised by the CNN based DAE were used to train the deep neural networks for classification. Three neural networks' performance has been evaluated using accuracy, specificity, sensitivity, and signal to noise ratio (SNR) as the evaluation criteria. The proposed end-to-end deep learning model for detecting atrial fibrillation in this study has achieved an accuracy rate of 99.20%, a specificity of 99.50%, a sensitivity of 99.50%, and a true positive rate of 99.00%. The average accuracy of the algorithms we compared is 96.26%, and our algorithm's accuracy is 3.2% higher than this average of the other algorithms. The CNN classification network performed better as compared to the other two. Additionally, the model is computationally efficient for real-time applications, and it takes approx 1.3 seconds to process 24 hours ECG signal. The proposed model was also tested on unseen dataset with different proportions of arrhythmias to examine the model's robustness, which resulted in 99.10% of recall and 98.50% of precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼吐司发布了新的文献求助10
刚刚
李顺利发布了新的文献求助10
刚刚
顾远发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
麦田守望者完成签到,获得积分10
刚刚
1秒前
开放穆发布了新的文献求助10
1秒前
2秒前
天真苑睐完成签到,获得积分10
2秒前
香蕉觅云应助杜志洪采纳,获得10
2秒前
yuki完成签到,获得积分10
3秒前
jksg发布了新的文献求助10
3秒前
科研通AI2S应助Sorexking采纳,获得50
3秒前
勤劳影子发布了新的文献求助10
4秒前
杨zuoting完成签到,获得积分10
4秒前
在水一方应助ooii采纳,获得10
6秒前
6秒前
6秒前
大模型应助Rg采纳,获得10
6秒前
lyf发布了新的文献求助10
7秒前
7秒前
yuki发布了新的文献求助10
8秒前
青铜伤疤发布了新的文献求助10
8秒前
顾矜应助瓜子飞一会采纳,获得10
9秒前
9秒前
科研通AI6应助开放穆采纳,获得10
9秒前
xuxingxing发布了新的文献求助10
10秒前
10秒前
11秒前
深情安青应助畅快以菱采纳,获得10
11秒前
踏实嚣发布了新的文献求助10
11秒前
SFQ发布了新的文献求助10
12秒前
jerry发布了新的文献求助10
12秒前
13秒前
小王发布了新的文献求助20
13秒前
天天快乐应助Annnn采纳,获得10
13秒前
14秒前
15秒前
15秒前
坚定芷烟发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521532
求助须知:如何正确求助?哪些是违规求助? 4612912
关于积分的说明 14536179
捐赠科研通 4550391
什么是DOI,文献DOI怎么找? 2493651
邀请新用户注册赠送积分活动 1474803
关于科研通互助平台的介绍 1446222