纳米载体
叶酸受体
核糖核酸酶P
化学
内化
胞浆
绿色荧光蛋白
生物素化
生物物理学
癌细胞
细胞生物学
细胞
生物化学
药物输送
核糖核酸
生物
酶
癌症
有机化学
基因
遗传学
作者
Namita Jaiswal,Sudeshna Halder,Nibedita Mahata,Nripen Chanda
标识
DOI:10.1021/acsabm.1c01216
摘要
Gold nanorods (AuNRs) remain well-developed inorganic nanocarriers of small molecules for a plethora of biomedical and therapeutic applications. However, the delivery of therapeutic proteins using AuNRs with high protein loading capacity (LC), serum stability, excellent target specificity, and minimal off-target protein release is not known. Herein, we report two bi-functional AuNR-protein nanoconjugates, AuNR@EGFP-BSAFA and AuNR@RNaseA-BSAFA, supramolecularly coated with folic acid-modified BSA (BSAFA) acting as biomimetic protein corona to demonstrate targeted cytosolic delivery of enhanced green fluorescent protein (EGFP) and therapeutic ribonuclease A enzyme (RNase A) in their functional forms. AuNR@EGFP-BSAFA and AuNR@RNaseA-BSAFA exhibit high LCs of ∼42 and ∼54%, respectively, increased colloidal stability, and rapid protein release in the presence of biological thiols. As a nanocarrier, AuNR@EGFP-BSAFA and AuNR@RNaseA-BSAFA show resistance to corona formation in high-serum media even after 24 h, guaranteeing a greater circulation lifetime. Folate receptor-targeting BSAFA on the AuNR surface facilitates the receptor-mediated internalization, followed by the release of EGFP and RNase A in HT29 cells. The green fluorescence dispersed throughout the cell's cytoplasm indicates successful cytosolic delivery of EGFP by AuNR@EGFP-BSAFA. AuNR@RNaseA-BSAFA-mediated therapeutic RNase A delivery in multicellular 3D spheroids of HT29 cells exhibits a radical reduction in the cellular RNA fluorescence intensity to 38%, signifying RNA degradation and subsequent cell death. The versatile nanoformulation strategy in terms of the anisotropic particle morphology, protein type, and ability for targeted delivery in the functional form makes the present AuNR-protein nanoconjugates a promising platform for potential application in cancer management.
科研通智能强力驱动
Strongly Powered by AbleSci AI