超材料
等离子体子
非线性系统
反向
计算机科学
二次谐波产生
深度学习
光电子学
材料科学
纳米光子学
电子工程
人工智能
光学
物理
工程类
数学
激光器
几何学
量子力学
作者
Lakshmi Raju,Kyu‐Tae Lee,Zhaocheng Liu,Dayu Zhu,Muliang Zhu,Ekaterina Poutrina,Augustine Urbas,Wenshan Cai
摘要
Traditional processes for the design of metamaterial structures are often computational heavy, time-consuming, and occasionally does not lead to the desired optical response. Deep learning can quickly optimize structures through inverse design, and create new geometries for devices. This research uses a deep learning framework for the inverse design of an optimal plasmonic structure to maximize the second-order nonlinear response from a nonlinear metamaterial. The thinfilm nonlinear metamaterial employed is a nanolaminate, and the optimal plasmonic structure is fabricated to establish the validity of the deep learning algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI