Dynamic demand-driven bike station clustering

共享单车 聚类分析 水准点(测量) 计算机科学 TRIPS体系结构 运输工程 星团(航天器) 交通拥挤
作者
Yi Jia Wang,Yong-Hong Kuo,George Q. Huang,Weihua Gu,Yaohua Hu
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:160: 102656-102656 被引量:2
标识
DOI:10.1016/j.tre.2022.102656
摘要

As an eco-friendly transportation option, bike-sharing systems have become increasingly popular because of their low costs and contributions to reducing traffic congestion and emissions generated by vehicles. Due to the availability of bikes and the geographically varied bike flows, shared-bike operators have to reposition bikes throughout the day in a large and dynamic shared-bike network. Most of the existing studies cluster bike stations by their geographical locations to form smaller sub-networks for more efficient optimization of bike-repositioning operations. This study develops a new methodological framework with a demand-driven approach to clustering bike stations in bike-sharing systems. Our approach captures spatiotemporal patterns of user demands and can enhance the efficiency of bike-repositioning operations. A directed graph is constructed to represent the bike-sharing system, whose vertices are bike stations and arcs represent bike flows, weighted by the number of trips between the bike stations. A novel demand-driven algorithm based on community detection is developed to solve the clustering problem. Numerical experiments are conducted with the data captured from the world’s largest bike-sharing system, consisting of nearly 3000 stations. The results show that, with CPLEX solutions as the benchmark, the proposed methodology provides high-quality solutions with shorter computing times. The clusters identified by our methodology are effective for bike repositioning, demonstrated by the balance of bike flows among clusters and geographic proximity of bike stations in each cluster The comparison between clusters found in different hours indicates that bike sharing is a short-distance transportation mode. One of the key conclusions from the computational study is that clustering bike stations by bike flow in the network not only enhances the efficiency of bike-repositioning operations but also preserves the geographic characteristics of clusters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明明发布了新的文献求助10
2秒前
茜茜完成签到 ,获得积分10
2秒前
情怀应助alooof采纳,获得10
2秒前
mysyne发布了新的文献求助10
4秒前
jiang完成签到,获得积分10
7秒前
7秒前
xixi完成签到 ,获得积分10
8秒前
芮安的白丁完成签到 ,获得积分10
9秒前
月下独酌42给手握灵珠常奋笔的求助进行了留言
10秒前
搜集达人应助郭博采纳,获得10
12秒前
13秒前
bei发布了新的文献求助10
18秒前
科研通AI2S应助jiang采纳,获得10
19秒前
rainy发布了新的文献求助50
21秒前
JL完成签到,获得积分10
22秒前
桐桐应助孤独念柏采纳,获得10
23秒前
hsoso完成签到,获得积分10
26秒前
五氧化二磷完成签到,获得积分10
26秒前
SciGPT应助他克莫司采纳,获得10
31秒前
王博士完成签到 ,获得积分10
36秒前
科研通AI2S应助栀璃鸳挽采纳,获得10
37秒前
38秒前
wendydqw完成签到 ,获得积分10
40秒前
41秒前
43秒前
丘比特应助冷静的寒荷采纳,获得10
45秒前
46秒前
zhitong完成签到,获得积分10
47秒前
Tomi完成签到,获得积分10
48秒前
49秒前
49秒前
南城以南完成签到,获得积分10
50秒前
白开水发布了新的文献求助10
51秒前
Owen应助明明采纳,获得30
52秒前
含糊的茹妖完成签到 ,获得积分0
53秒前
zho发布了新的文献求助10
53秒前
54秒前
54秒前
洞若观烟火完成签到,获得积分10
55秒前
天天快乐应助杨冰采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211237
捐赠科研通 3038044
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098