Speech as a Biomarker for Depression

概化理论 计算机科学 计算语言学 领域(数学) 计算模型 数据科学 机器学习 人工智能 封面(代数) 自然语言处理 心理学 数学 机械工程 工程类 发展心理学 纯数学
作者
Sanne Koops,Sanne Brederoo,Janna N. de Boer,Femke G. Nadema,Alban Voppel,Iris E. Sommer
出处
期刊:Cns & Neurological Disorders-drug Targets [Bentham Science Publishers]
卷期号:22 (2): 152-160 被引量:36
标识
DOI:10.2174/1871527320666211213125847
摘要

Depression is a debilitating disorder that at present lacks a reliable biomarker to aid in diagnosis and early detection. Recent advances in computational analytic approaches have opened up new avenues in developing such a biomarker by taking advantage of the wealth of information that can be extracted from a person's speech.The current review provides an overview of the latest findings in the rapidly evolving field of computational language analysis for the detection of depression. We cover a wide range of both acoustic and content-related linguistic features, data types (i.e., spoken and written language), and data sources (i.e., lab settings, social media, and smartphone-based). We put special focus on the current methodological advances with regard to feature extraction and computational modeling techniques. Furthermore, we pay attention to potential hurdles in the implementation of automatic speech analysis.Depressive speech is characterized by several anomalies, such as lower speech rate, less pitch variability and more self-referential speech. With current computational modeling techniques, such features can be used to detect depression with an accuracy of up to 91%. The performance of the models is optimized when machine learning techniques are implemented that suit the type and amount of data. Recent studies now work towards further optimization and generalizability of the computational language models to detect depression. Finally, privacy and ethical issues are of paramount importance to be addressed when automatic speech analysis techniques are further implemented in, for example, smartphones. Altogether, computational speech analysis is well underway towards becoming an effective diagnostic aid for depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
siiiiixx完成签到,获得积分10
1秒前
4秒前
5秒前
5秒前
Hy.完成签到,获得积分10
8秒前
9秒前
HP发布了新的文献求助10
10秒前
伶俐绿海完成签到 ,获得积分10
11秒前
13秒前
14秒前
stan完成签到,获得积分10
15秒前
15秒前
CarolineOY完成签到,获得积分10
15秒前
SciGPT应助HP采纳,获得10
18秒前
超帅忆枫完成签到,获得积分20
18秒前
20秒前
FF完成签到 ,获得积分10
21秒前
ws发布了新的文献求助10
22秒前
23秒前
SYLH应助mayberichard采纳,获得10
23秒前
孤独曼冬发布了新的文献求助10
25秒前
26秒前
27秒前
路痴发布了新的文献求助10
29秒前
32秒前
32秒前
路痴完成签到,获得积分10
35秒前
35秒前
健忘鞋垫完成签到,获得积分10
36秒前
11122发布了新的文献求助30
38秒前
43秒前
阿姊完成签到 ,获得积分10
46秒前
CipherSage应助11122采纳,获得10
48秒前
48秒前
48秒前
49秒前
852应助youyouyou采纳,获得10
49秒前
立冏商完成签到,获得积分10
50秒前
北过完成签到,获得积分10
50秒前
52秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784087
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240662
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671236
邀请新用户注册赠送积分活动 800191
科研通“疑难数据库(出版商)”最低求助积分说明 759222