亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of the automated monitoring of the sow activity in farrowing pens using video and accelerometer data

加速度计 计算机科学 计算机视觉 人工智能 活动识别 对象(语法) 操作系统
作者
Maciej Oczak,Florian Bayer,Sebastian G. Vetter,Kristina Maschat,Johannes Baumgartner
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:192: 106517-106517 被引量:5
标识
DOI:10.1016/j.compag.2021.106517
摘要

• RetinaNet object detection algorithm was used to detect parts of a body of a sow. • Activity of different body parts were estimated based on object detection. • Two technologies were compared, ear tag accelerometer with computer vision. • Both technologies provide very similar information on activity level of animals. Patterns in pigs activity can be an indicator of health and welfare of the animals. This motivates researchers to develop Precision Livestock Farming (PLF) tools for automated monitoring of pig activity level. In this research we compared two important technologies that can be used for this purpose, ear tag accelerometer and computer vision. Additionally, we compared both technologies with gold standard based on human labelling. A state-of-the-art object detection algorithm RetinaNet was trained on 9969 images and validated on 4273 images to automatically detect head of a sow, body of a sow, left ear, right ear and a hay rack. It was possible to detect these objects with a performance of 0.26 mAP@0.5:0.95. Activity of 6 sows was derived from detected parts of animals’ bodies and compared with activity measurement based on ear tag accelerometer data. Dynamic relation between activity measurement based on both technologies was modelled with Transfer Function (TF) models. For all 6 animals activity of the body of a sow based on object detection was very similar to accelerometer based activity measurement ( R 2 > 0.7). Similarly R 2 between activity of a head of a sow and accelerometer based activity was also very similar for most sows ( R 2 > 0.7). Results of fitting of TF models to animal activity data based on ear tag accelerometer and output of object detection on body of sows and head of sows suggests that both technologies, the accelerometer and computer vision provide very similar information on activity level of animals. The presented computer vision method is limited to monitoring one animal under camera view as detected body parts cannot be associated with multiple individuals. Moreover, we expect that the method requires re-training the RetinaNet object detection algorithm with additional images collected on additional farms to achieve satisfactory performance in different environments. Application of computer vision approach might be advantageous in some PLF applications as it is non-invasive and might be less laborious than method based on ear tag accelerometer data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leslie发布了新的文献求助10
2秒前
彭于晏应助lishunzcqty采纳,获得10
3秒前
6秒前
Qvby3完成签到 ,获得积分10
8秒前
顾矜应助leslie采纳,获得10
9秒前
Hello应助liyx采纳,获得10
15秒前
Dawn完成签到,获得积分10
15秒前
21秒前
21秒前
饭粒发布了新的文献求助10
25秒前
狂野老黑完成签到,获得积分10
31秒前
独特的幻悲关注了科研通微信公众号
34秒前
自由橘子完成签到 ,获得积分10
39秒前
Werido完成签到 ,获得积分10
42秒前
42秒前
46秒前
king完成签到 ,获得积分10
47秒前
49秒前
52秒前
52秒前
53秒前
亚当完成签到 ,获得积分10
56秒前
57秒前
饭粒完成签到,获得积分10
59秒前
冷先森EPC完成签到,获得积分10
1分钟前
1分钟前
欣慰的酒窝完成签到 ,获得积分20
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
沉默寻凝完成签到,获得积分10
1分钟前
1分钟前
来玩的完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
国色不染尘完成签到,获得积分10
2分钟前
可爱的函函应助fheu采纳,获得10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702