亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stratification of prostate cancer patients into low‐ and high‐grade groups using multiparametric magnetic resonance radiomics with dynamic contrast‐enhanced image joint histograms

直方图 接收机工作特性 前列腺癌 磁共振成像 医学 模式识别(心理学) 人工智能 核医学 前列腺 癌症 计算机科学 放射科 图像(数学) 内科学
作者
Akimasa Urakami,Hidetaka Arimura,Yoshiaki Takayama,Fumio Kinoshita,Kenta Ninomiya,Kenjiro Imada,Soichi Watanabe,Akihiro Nishie,Yoshinao Oda,Kousei Ishigami
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 330-344 被引量:4
标识
DOI:10.1002/pros.24278
摘要

This study aimed to investigate the potential of stratification of prostate cancer patients into low- and high-grade groups (GGs) using multiparametric magnetic resonance (mpMR) radiomics in conjunction with two-dimensional (2D) joint histograms computed with dynamic contrast-enhanced (DCE) images.A total of 101 prostate cancer regions extracted from the MR images of 44 patients were identified and divided into training (n = 31 with 72 cancer regions) and test datasets (n = 13 with 29 cancer regions). Each dataset included low-grade tumors (International Society of Urological Pathology [ISUP] GG ≤ 2) and high-grade tumors (ISUP GG ≥ 3). A total of 137,970 features consisted of mpMR image (16 types of images in four sequences)-based and joint histogram (DCE images at 10 phases)-based features for each cancer region. Joint histogram features can visualize temporally changing perfusion patterns in prostate cancer based on the joint histograms between different phases or subtraction phases of DCE images. Nine signatures (a set of significant features related to GGs) were determined using the best combinations of features selected using the least absolute shrinkage and selection operator. Further, support vector machine models with the nine signatures were built based on a leave-one-out cross-validation for the training dataset and evaluated with receiver operating characteristic (ROC) curve analysis.The signature showing the best performance was constructed using six features derived from the joint histograms, DCE original images, and apparent diffusion coefficient maps. The areas under the ROC curves for the training and test datasets were 1.00 and 0.985, respectively.This study suggests that the proposed approach with mpMR radiomics in conjunction with 2D joint histogram computed with DCE images could have the potential to stratify prostate cancer patients into low- and high-GGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
22秒前
46秒前
haralee完成签到 ,获得积分10
55秒前
胖小羊完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
y234j788发布了新的文献求助10
1分钟前
1分钟前
国色不染尘完成签到,获得积分10
1分钟前
y234j788完成签到,获得积分20
1分钟前
2分钟前
2分钟前
wandali发布了新的文献求助30
2分钟前
2分钟前
五月初夏发布了新的文献求助100
2分钟前
wandali发布了新的文献求助30
2分钟前
科研通AI2S应助wandali采纳,获得30
3分钟前
3分钟前
彭于晏应助Funnymudpee采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
过时的笙发布了新的文献求助10
3分钟前
科研通AI2S应助过时的笙采纳,获得10
3分钟前
Eileen完成签到 ,获得积分10
3分钟前
3分钟前
JoeyJin发布了新的文献求助10
4分钟前
4分钟前
酷波er应助JoeyJin采纳,获得10
4分钟前
4分钟前
4分钟前
wwww发布了新的文献求助10
5分钟前
咯哦完成签到,获得积分10
5分钟前
咯哦发布了新的文献求助20
5分钟前
能干冰旋完成签到,获得积分10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324260
求助须知:如何正确求助?哪些是违规求助? 4465245
关于积分的说明 13894232
捐赠科研通 4357091
什么是DOI,文献DOI怎么找? 2393173
邀请新用户注册赠送积分活动 1386688
关于科研通互助平台的介绍 1357052