Discovery of direct band gap perovskites for light harvesting by using machine learning

带隙 混乱 分类器(UML) 直接和间接带隙 Python(编程语言) 混淆矩阵 材料科学 计算机科学 人工智能 机器学习 光电子学 精神分析 心理学 操作系统
作者
Smarak Rath,G. Sudha Priyanga,N. Nagappan,Tiju Thomas
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:210: 111476-111476 被引量:17
标识
DOI:10.1016/j.commatsci.2022.111476
摘要

An approach that would allow quick determination of compositions that are most likely to be direct band gap materials would significantly accelerate research on light-harvesting materials. Inorganic perovskites are attractive for this purpose since they afford compositional flexibility, while also offering stability. Here, ABX3 inorganic perovskites (A and B are cations and X is an anion) are classified into direct band gap and indirect band gap materials by using the XGBOOST (eXtreme Gradient BOOST) classifier. We use a dataset containing 1528 ABX3 compounds (X = O, F, Cl, Br, I, S, Se, Te, N, or P) along with information on the nature of their band gap (direct or indirect). All the data is taken from the Materials Project database. Descriptors for these materials are generated using the Matminer python package. Ten-fold cross-validation with the XGBOOST classifier is used on the dataset and the average accuracy is found to be 72.8%. To generate a confusion matrix, the dataset is once again split into a training set and a testing set after cross-validation. Subsequently, the confusion matrix is generated for that particular test set. It is found that the precision for the prediction of direct band gap materials is 81% i.e., 81% of the materials predicted to be direct band gap materials are actually direct band gap materials. Thus, machine learning can be an effective tool for discovering novel direct band gap perovskites. Finally, SHAP (SHapley Additive exPlanations) analysis is performed to determine the most important descriptors. One key insight gained from the SHAP analysis is that the absence of transition metals and elements belonging to groups IIIA to VIIIA with atomic number greater than 20 increases the probability of the perovskite having a direct band gap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的子默完成签到,获得积分10
1秒前
雪白鸿涛发布了新的文献求助10
5秒前
JamesPei应助苹果觅夏采纳,获得10
6秒前
8秒前
御风完成签到,获得积分20
9秒前
10秒前
科研通AI5应助jzyy采纳,获得10
10秒前
科目三应助御风采纳,获得10
12秒前
动漫大师发布了新的文献求助10
13秒前
123发布了新的文献求助10
14秒前
15秒前
ajun完成签到,获得积分10
16秒前
葛擎苍发布了新的文献求助10
16秒前
小蓝的科研生活完成签到,获得积分10
17秒前
科研通AI5应助123采纳,获得10
18秒前
温谷完成签到 ,获得积分10
18秒前
6633发布了新的文献求助10
18秒前
19秒前
鸣风发布了新的文献求助10
19秒前
大大大大管子完成签到 ,获得积分10
19秒前
zhy完成签到,获得积分10
20秒前
BINBIN完成签到 ,获得积分10
21秒前
21秒前
NexusExplorer应助qqy采纳,获得10
22秒前
123完成签到,获得积分10
22秒前
23秒前
隐形曼青应助zhangxinxin采纳,获得10
23秒前
six完成签到,获得积分10
24秒前
鹿梦发布了新的文献求助10
24秒前
Zyl完成签到 ,获得积分10
25秒前
FashionBoy应助怕黑香菇采纳,获得10
25秒前
jzyy发布了新的文献求助10
25秒前
25秒前
小白发布了新的文献求助10
27秒前
十一完成签到 ,获得积分10
27秒前
peikyang发布了新的文献求助10
29秒前
zhangxinxin完成签到 ,获得积分10
29秒前
钮傲白完成签到,获得积分10
29秒前
虾条完成签到 ,获得积分10
29秒前
自建完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751