AnoGLA: An efficient scheme to improve network anomaly detection

计算机科学 异常检测 稳健性(进化) 利用 数据挖掘 网络安全 图形 入侵检测系统 方案(数学) 理论计算机科学 计算机安全 数学分析 生物化学 化学 数学 基因
作者
Qingfeng Ding,Jinguo Li
出处
期刊:Journal of information security and applications [Elsevier BV]
卷期号:66: 103149-103149 被引量:2
标识
DOI:10.1016/j.jisa.2022.103149
摘要

With increasingly cyber-attacks and intrusion techniques, the threat of network security has become more and more serious. However, existing solutions are no longer sufficient in terms of accuracy as attacks continue to grow in quantity and complexity. Prior methods mainly focused on the application of deep learning techniques to analyze data changes in traffic flow. The cunning Cyber-attacks cannot be detected because some advanced attack techniques can conceal attacks and make them might seem innocuous in statistics. At the same time, traditional models only concentrate on the statistics of traffic sent by individual hosts, so the potential relationships of communication patterns in network traffic might be ignored. It makes these solutions are not competent for dealing with the various uncertainty in network traffic. In this paper, we propose an efficient anomaly detection approach, called AnoGLA, which considering the complex communication patterns between network structure and node properties. To mine the hidden relationship between network traffic, we built graph structured data in network traffic and exploits graph convolution network (GCN) for modeling. And we also combine long short-term memory network (LSTM) with Attention mechanism to extract the change information of the graph at different times. The effectiveness and robustness of proposed method are evaluated on two real-world datasets. The experiment results indicate that our scheme can effectively detect anomaly flow and outperforms the previous ones in network anomaly detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111111完成签到,获得积分10
刚刚
刚刚
高兴的路人完成签到,获得积分20
1秒前
1秒前
啊是是是发布了新的文献求助10
2秒前
Albert发布了新的文献求助10
2秒前
woxin发布了新的文献求助10
3秒前
天天快乐应助TIGun采纳,获得10
3秒前
tian发布了新的文献求助10
5秒前
6秒前
科研通AI5应助奋斗的绿凝采纳,获得10
6秒前
ABC2023发布了新的文献求助10
6秒前
ding应助Giao采纳,获得10
7秒前
科研通AI5应助Yaon-Xu采纳,获得30
7秒前
7秒前
11发布了新的文献求助10
11秒前
科研通AI5应助sunshine采纳,获得10
11秒前
科研通AI5应助tian采纳,获得10
12秒前
13秒前
浩二发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
月亮与六便士完成签到 ,获得积分10
16秒前
pluto应助踏实的绿柏采纳,获得20
17秒前
打打应助xueyixiaogou采纳,获得10
17秒前
11完成签到,获得积分10
18秒前
leena发布了新的文献求助10
20秒前
Giao发布了新的文献求助10
20秒前
英俊的铭应助思敏采纳,获得10
22秒前
22秒前
善良梦竹完成签到 ,获得积分10
23秒前
25秒前
单薄的飞松完成签到 ,获得积分10
25秒前
隐形曼青应助强健的冰旋采纳,获得10
27秒前
大模型应助清新的音响采纳,获得10
28秒前
ada发布了新的文献求助10
29秒前
NINISO关注了科研通微信公众号
29秒前
共享精神应助Rookie采纳,获得10
29秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366