Special issue “The advance of solid tumor research in China”: Prognosis prediction for stage II colorectal cancer by fusing computed tomography radiomics and deep‐learning features of primary lesions and peripheral lymph nodes

无线电技术 医学 一致性 阶段(地层学) 结直肠癌 深度学习 人工智能 放射科 卷积神经网络 癌症 内科学 肿瘤科 计算机科学 生物 古生物学
作者
Menglei Li,Jing Gong,Yichao Bao,Dan Huang,Junjie Peng,Tong Tong
出处
期刊:International Journal of Cancer [Wiley]
卷期号:152 (1): 31-41 被引量:12
标识
DOI:10.1002/ijc.34053
摘要

Abstract Currently, the prognosis assessment of stage II colorectal cancer (CRC) remains a difficult clinical problem; therefore, more accurate prognostic predictors must be developed. In our study, we developed a prognostic prediction model for stage II CRC by fusing radiomics and deep‐learning (DL) features of primary lesions and peripheral lymph nodes (LNs) in computed tomography (CT) scans. First, two CT radiomics models were built using primary lesion and LN image features. Subsequently, an information fusion method was used to build a fusion radiomics model by combining the tumor and LN image features. Furthermore, a transfer learning method was applied to build a deep convolutional neural network (CNN) model. Finally, the prediction scores generated by the radiomics and CNN models were fused to improve the prognosis prediction performance. The disease‐free survival (DFS) and overall survival (OS) prediction areas under the curves (AUCs) generated by the fusion model improved to 0.76 ± 0.08 and 0.91 ± 0.05, respectively. These were significantly higher than the AUCs generated by the models using the individual CT radiomics and deep image features. Applying the survival analysis method, the DFS and OS fusion models yielded concordance index (C‐index) values of 0.73 and 0.9, respectively. Hence, the combined model exhibited good predictive efficacy; therefore, it could be used for the accurate assessment of the prognosis of stage II CRC patients. Moreover, it could be used to screen out high‐risk patients with poor prognoses, and assist in the formulation of clinical treatment decisions in a timely manner to achieve precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丙队长完成签到,获得积分10
刚刚
刻苦的三问完成签到,获得积分10
刚刚
西域卧虎完成签到 ,获得积分10
1秒前
dang关注了科研通微信公众号
1秒前
xiangpimei完成签到 ,获得积分10
1秒前
AHR发布了新的文献求助10
2秒前
fusucheng完成签到,获得积分10
2秒前
DavidSun完成签到,获得积分10
2秒前
明眸发布了新的文献求助10
2秒前
3秒前
无花果应助郭昱嘉采纳,获得10
3秒前
duan完成签到,获得积分10
4秒前
随缘完成签到,获得积分10
4秒前
姜惠完成签到,获得积分10
4秒前
甜蜜发带完成签到 ,获得积分0
5秒前
乐正海亦完成签到,获得积分10
5秒前
5秒前
昵称儿完成签到,获得积分10
6秒前
wulin314完成签到,获得积分10
6秒前
6秒前
6秒前
爱听歌的峻熙完成签到,获得积分10
6秒前
柔弱的便当完成签到,获得积分10
7秒前
8秒前
脑洞疼应助streamerz采纳,获得10
8秒前
苏莉婷完成签到,获得积分20
8秒前
七七完成签到,获得积分10
8秒前
科目三应助Eileen采纳,获得10
9秒前
沧笙踏歌完成签到,获得积分10
9秒前
小二郎应助alexye619采纳,获得10
10秒前
11秒前
独特秋双完成签到,获得积分10
11秒前
11秒前
丰富的匪完成签到 ,获得积分10
12秒前
yuanpiao完成签到,获得积分10
12秒前
MOOTEA发布了新的文献求助10
12秒前
lishiwei完成签到 ,获得积分10
13秒前
戈屿完成签到 ,获得积分10
13秒前
zy完成签到 ,获得积分10
13秒前
脑洞疼应助火星上静白采纳,获得10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337240
求助须知:如何正确求助?哪些是违规求助? 4474523
关于积分的说明 13924555
捐赠科研通 4369386
什么是DOI,文献DOI怎么找? 2400793
邀请新用户注册赠送积分活动 1393879
关于科研通互助平台的介绍 1365715