Temperature field inversion of heat-source systems via physics-informed neural networks

反演(地质) 计算机科学 人工神经网络 插值(计算机图形学) 算法 噪音(视频) 数学优化 人工智能 数学 地质学 运动(物理) 构造盆地 图像(数学) 古生物学
作者
Xü Liu,Wei Peng,Zhiqiang Gong,Weien Zhou,Wen Yao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:113: 104902-104902 被引量:56
标识
DOI:10.1016/j.engappai.2022.104902
摘要

Temperature field inversion of heat-source systems (TFI-HSS) with limited observations is essential to monitor the system health. Although some methods such as interpolation have been proposed to solve TFI-HSS, those existing methods ignore correlations between data constraints and physics constraints, causing the low precision. In this work, we develop a physics-informed neural network-based temperature field inversion (PINN-TFI) method to solve the TFI-HSS task and a coefficient matrix condition number based position selection of observations (CMCN-PSO) method to select optima positions of noise observations. For the TFI-HSS task, the PINN-TFI method encodes constrain terms into the loss function, thus the task is transformed into an optimization problem of minimizing the loss function. In addition, we have found that noise observations significantly affect reconstruction performances of the PINN-TFI method. To alleviate the effect of noise observations, the CMCN-PSO method is proposed to find optimal positions, where the condition number of observations is used to evaluate positions. The results demonstrate that the PINN-TFI method can significantly improve prediction precisions and the CMCN-PSO method can find good positions to acquire a more robust temperature field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻寄灵发布了新的文献求助10
刚刚
yqf完成签到,获得积分10
刚刚
云歇雨住发布了新的文献求助10
1秒前
啦啦啦发布了新的文献求助30
1秒前
2秒前
pharmac发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
6秒前
7秒前
严昌发布了新的文献求助10
8秒前
丁鹏笑完成签到 ,获得积分0
9秒前
10秒前
10秒前
浅沫juanjuan完成签到,获得积分10
11秒前
荼蘼如雪发布了新的文献求助10
12秒前
品123完成签到,获得积分10
12秒前
云歇雨住发布了新的文献求助10
12秒前
排骨炖豆角完成签到 ,获得积分10
13秒前
ABJ完成签到,获得积分10
13秒前
water应助小王采纳,获得10
14秒前
啦啦啦完成签到,获得积分10
14秒前
格物观微完成签到,获得积分10
14秒前
SYLH应助不知终日梦为鱼采纳,获得10
14秒前
14秒前
wzppp发布了新的文献求助10
15秒前
huoguo完成签到 ,获得积分10
15秒前
15秒前
cxy3311完成签到,获得积分10
16秒前
ZR14124应助youyou1990采纳,获得10
17秒前
李爱国应助啦啦啦采纳,获得10
17秒前
彬彬发布了新的文献求助10
17秒前
严昌完成签到,获得积分20
18秒前
隐形曼青应助如意2023采纳,获得10
18秒前
学术智子完成签到,获得积分10
19秒前
wzppp完成签到,获得积分10
19秒前
缪风华完成签到,获得积分10
19秒前
小七发布了新的文献求助10
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3944873
求助须知:如何正确求助?哪些是违规求助? 3489923
关于积分的说明 11054034
捐赠科研通 3220905
什么是DOI,文献DOI怎么找? 1780326
邀请新用户注册赠送积分活动 865209
科研通“疑难数据库(出版商)”最低求助积分说明 799837