City classification for municipal solid waste prediction in mainland China based on K-means clustering

城市固体废物 聚类分析 人均 中国大陆 地理 国内生产总值 人口 星团(航天器) 中国 环境科学 环境工程 统计 数学 工程类 经济增长 计算机科学 废物管理 人口学 经济 考古 社会学 程序设计语言
作者
Xingyu Du,Dongjie Niu,Yu Chen,Xin Wang,Zhujie Bi
出处
期刊:Waste Management [Elsevier]
卷期号:144: 445-453 被引量:27
标识
DOI:10.1016/j.wasman.2022.04.024
摘要

Cities in mainland China are usually classified according to geographical locations. This traditional city classification system is limited to relative fixed factors, which lives out a gap in terms of the spatial differences of municipal solid waste (MSW). Developing a more comprehensive city classification system is essential for MSW generation prediction and waste management. In this study, six economic, social and climatic indicators that affect MSW generation: population, per capita GDP (PCGDP), environmental sanitation investment (ESI), average temperature, average precipitation, and average humidity, are selected. Weights were calculated for each indicator using a combination of CRITIC weight method and Pearson correlation coefficient prior to cluster analysis. The k-means clustering algorithm was used to classify all cities into four clusters, which differed significantly in the relationships between MSW generation and influencing factors. The results of Kruskal-Wallis test also show that cities in different clusters show different distributions in terms of the indicators selected. The cross-prediction results of the model further validate the reliability of the clustering results from a quantitative perspective. By establishing a city classification system, cities with similar relationships between MSW generation and influencing factors can be placed into one cluster. The model established in one certain city cluster can be used to predict the MSW generation for cities in the same cluster that lack historical data. This may also help to formulate appropriate regional policies according to different relationships between MSW generation and influencing factors, especially for the four city clusters in the mainland China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Matthewwt发布了新的文献求助10
1秒前
炙热成仁发布了新的文献求助10
1秒前
1秒前
宗语雪完成签到 ,获得积分10
2秒前
ZZQ完成签到,获得积分10
2秒前
2秒前
Ava应助melodyshan采纳,获得10
3秒前
平淡剑鬼完成签到,获得积分10
3秒前
3秒前
Belief完成签到,获得积分10
3秒前
4秒前
所所应助欣慰曼彤采纳,获得10
4秒前
欢喜代萱完成签到,获得积分20
5秒前
Ava应助啧啧啧采纳,获得10
5秒前
7秒前
7秒前
7秒前
7秒前
火星上问梅完成签到,获得积分10
7秒前
wanci应助冷艳的世立采纳,获得30
8秒前
8秒前
pluto应助fanqie采纳,获得10
9秒前
绛川完成签到,获得积分20
9秒前
9秒前
研友_VZG7GZ应助山山而川采纳,获得10
10秒前
一四完成签到,获得积分10
10秒前
阿玖发布了新的文献求助20
10秒前
pan发布了新的文献求助10
10秒前
10秒前
zeal发布了新的文献求助10
10秒前
111完成签到,获得积分10
11秒前
拓展完成签到 ,获得积分10
11秒前
11秒前
赏金猎人John_Wang完成签到,获得积分10
12秒前
chuple发布了新的文献求助10
12秒前
绛川发布了新的文献求助10
13秒前
changxu发布了新的文献求助10
13秒前
快乐零零屋完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481669
求助须知:如何正确求助?哪些是违规求助? 4582673
关于积分的说明 14386112
捐赠科研通 4511427
什么是DOI,文献DOI怎么找? 2472323
邀请新用户注册赠送积分活动 1458599
关于科研通互助平台的介绍 1432119