Adversarial Evolving Neural Network for Longitudinal Knee Osteoarthritis Prediction

鉴别器 人工智能 计算机科学 分级(工程) 深度学习 卷积神经网络 骨关节炎 对抗制 纵向研究 模式识别(心理学) 机器学习 卷积(计算机科学) 人工神经网络 医学 数学 统计 病理 探测器 电信 工程类 土木工程 替代医学
作者
Kun Hu,Wenhua Wu,Wei Li,Milena Simić,Albert Y. Zomaya,Zhiyong Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 3207-3217 被引量:18
标识
DOI:10.1109/tmi.2022.3181060
摘要

Knee osteoarthritis (KOA) as a disabling joint disease has doubled in prevalence since the mid-20th century. Early diagnosis for the longitudinal KOA grades has been increasingly important for effective monitoring and intervention. Although recent studies have achieved promising performance for baseline KOA grading, longitudinal KOA grading has been seldom studied and the KOA domain knowledge has not been well explored yet. In this paper, a novel deep learning architecture, namely adversarial evolving neural network (A-ENN), is proposed for longitudinal grading of KOA severity. As the disease progresses from mild to severe level, ENN involves the progression patterns for accurately characterizing the disease by comparing an input image it to the template images of different KL grades using convolution and deconvolution computations. In addition, an adversarial training scheme with a discriminator is developed to obtain the evolution traces. Thus, the evolution traces as fine-grained domain knowledge are further fused with the general convolutional image representations for longitudinal grading. Note that ENN can be applied to other learning tasks together with existing deep architectures, in which the responses characterize progressive representations. Comprehensive experiments on the Osteoarthritis Initiative (OAI) dataset were conducted to evaluate the proposed method. An overall accuracy was achieved as 62.7%, with the baseline, 12-month, 24-month, 36-month, and 48-month accuracy as 64.6%, 63.9%, 63.2%, 61.8% and 60.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助半江采纳,获得10
刚刚
zcvxd完成签到,获得积分10
刚刚
刚刚
一期一发布了新的文献求助10
1秒前
竹前家庆完成签到,获得积分10
1秒前
1秒前
2秒前
上官若男应助静默采纳,获得10
2秒前
白斯特完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
jiashuo完成签到,获得积分10
4秒前
4秒前
gude发布了新的文献求助10
4秒前
隐形曼青应助平常的飞风采纳,获得30
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
淡然葶完成签到 ,获得积分10
5秒前
iui飞完成签到,获得积分10
5秒前
miracle发布了新的文献求助10
5秒前
5秒前
zz完成签到 ,获得积分10
5秒前
zhengjinwu发布了新的文献求助10
6秒前
科研通AI6应助Jyouang采纳,获得10
6秒前
我讨厌文献综述完成签到 ,获得积分10
8秒前
翟淑雨完成签到,获得积分10
8秒前
9秒前
9秒前
义气语儿完成签到,获得积分10
11秒前
lqy完成签到,获得积分10
11秒前
积极的亦云完成签到,获得积分10
11秒前
miracle完成签到,获得积分10
11秒前
12秒前
科研通AI6应助火星上惋庭采纳,获得10
12秒前
12秒前
严三笑完成签到,获得积分10
13秒前
Alon发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074392
求助须知:如何正确求助?哪些是违规求助? 4294523
关于积分的说明 13381522
捐赠科研通 4115896
什么是DOI,文献DOI怎么找? 2253991
邀请新用户注册赠送积分活动 1258605
关于科研通互助平台的介绍 1191479