钽
铁磁性
化学
凝聚态物理
二硫键
极限(数学)
结晶学
物理
数学
生物化学
数学分析
有机化学
作者
Samra Husremović,Catherine Groschner,Katherine Inzani,Isaac M. Craig,Karen C. Bustillo,Peter Ercius,Nathanael P. Kazmierczak,Jacob Syndikus,Madeline Van Winkle,Shaul Aloni,Takashi Taniguchi,Kenji Watanabe,Sinéad M. Griffin,D. Kwabena Bediako
摘要
Two-dimensional (2D) magnetic crystals hold promise for miniaturized and ultralow power electronic devices that exploit spin manipulation. In these materials, large, controllable magnetocrystalline anisotropy is a prerequisite for the stabilization and manipulation of long-range magnetic order. In known 2D magnetic crystals, relatively weak magnetocrystalline anisotropy results in typically soft ferromagnetism. Here, we demonstrate that ferromagnetic order persists down to the thinnest limit of Fe$_x$TaS$_2$ (Fe-intercalated bilayer 2H-TaS$_2$) with giant coercivities up to 3 tesla. We prepare Fe-intercalated TaS$_2$ by chemical intercalation of van der Waals layered 2H-TaS$_2$ crystals and perform variable-temperature quantum transport, transmission electron microscopy, and confocal Raman spectroscopy measurements to shed new light on the coupled effects of dimensionality, degree of intercalation, and intercalant order/disorder on the hard ferromagnetic behavior of Fe$_x$TaS$_2$. More generally, we show that chemical intercalation gives access to a rich synthetic parameter space for low-dimensional magnets, in which magnetic properties can be tailored by the choice of the host material and intercalant identity/amount, in addition to the manifold distinctive degrees of freedom available in atomically thin, van der Waals crystals.
科研通智能强力驱动
Strongly Powered by AbleSci AI