清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of Empirical Scalars To Enable Early Prediction of Human Hepatic Clearance Using In Vitro-In Vivo Extrapolation in Drug Discovery: An Evaluation of 173 Drugs

外推法 药代动力学 体内 药理学 缩放比例 化学 医学 数学 统计 生物 几何学 生物技术
作者
Robert S. Jones,Christian Leung,Jae H. Chang,Suzanne J. Brown,Ning Liu,Zhengyin Yan,Jane R. Kenny,Fabio Broccatelli
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology and Experimental Therapeutics]
卷期号:50 (8): 1053-1063 被引量:30
标识
DOI:10.1124/dmd.121.000784
摘要

The utilization of in vitro data to predict drug pharmacokinetics (PK) in vivo has been a consistent practice in early drug discovery for decades. However, its success is hampered by mispredictions attributed to uncharacterized biological phenomena/experimental artifacts. Predicted drug clearance (CL) from experimental data (i.e., intrinsic clearance: CLint; fraction unbound in plasma: fu,p) is often systematically underpredicted using the well-stirred model (WSM). The objective of this study was to evaluate using empirical scalars in the WSM to correct for CL mispredictions. Drugs (N = 28) were used to generate numerical scalars on CLint (α) and fu,p (β) to minimize the absolute average fold error (AAFE) for CL predictions. These scalars were validated using an additional dataset (N = 28 drugs) and applied to a nonredundant AstraZeneca (AZ) dataset available in the literature (N = 117 drugs) for a total of 173 compounds. CL predictions using the WSM were improved for most compounds using an α value of 3.66 (∼64% < 2-fold) compared with no scaling (∼46% < 2-fold). Similarly, using a β value of 0.55 or combination of α and β scalars (values of 1.74 and 0.66, respectively) resulted in a similar improvement in predictions (∼64% < 2-fold and ∼65% < 2-fold, respectively). For highly bound compounds (fu,p ≤ 0.01), AAFE was substantially reduced across all scaling methods. Using the β scalar alone or a combination of α and β appeared optimal and produced larger magnitude corrections for highly bound compounds. Some drugs are still disproportionally mispredicted; however, the improvements in prediction error and simplicity of applying these scalars suggest its utility for early-stage CL predictions.

SIGNIFICANCE STATEMENT

In early drug discovery, prediction of human clearance using in vitro experimental data plays an essential role in triaging compounds prior to in vivo studies. These predictions have been systematically underestimated. Here we introduce empirical scalars calibrated on the extent of plasma protein binding that appear to improve clearance predictions across multiple datasets. This approach can be used in early phases of drug discovery prior to the availability of preclinical data for early quantitative predictions of human clearance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
22秒前
丘比特应助科研通管家采纳,获得10
42秒前
51秒前
量子星尘发布了新的文献求助10
57秒前
传奇3应助温偏烫采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小大夫完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
光合作用完成签到,获得积分10
2分钟前
翟翟发布了新的文献求助10
2分钟前
2分钟前
2分钟前
温偏烫发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
深情安青应助舒心伊采纳,获得10
5分钟前
鹿小新完成签到 ,获得积分0
6分钟前
情怀应助温偏烫采纳,获得10
6分钟前
6分钟前
6分钟前
舒心伊发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
wanci应助舒心伊采纳,获得10
6分钟前
6分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865727
求助须知:如何正确求助?哪些是违规求助? 3408292
关于积分的说明 10657147
捐赠科研通 3132263
什么是DOI,文献DOI怎么找? 1727517
邀请新用户注册赠送积分活动 832351
科研通“疑难数据库(出版商)”最低求助积分说明 780242