Application of Empirical Scalars To Enable Early Prediction of Human Hepatic Clearance Using In Vitro-In Vivo Extrapolation in Drug Discovery: An Evaluation of 173 Drugs

外推法 药代动力学 体内 药理学 缩放比例 化学 医学 数学 统计 生物 几何学 生物技术
作者
Robert S. Jones,Christian Leung,Jae H. Chang,Suzanne J. Brown,Ning Liu,Zhengyin Yan,Jane R. Kenny,Fabio Broccatelli
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology and Experimental Therapeutics]
卷期号:50 (8): 1053-1063 被引量:32
标识
DOI:10.1124/dmd.121.000784
摘要

The utilization of in vitro data to predict drug pharmacokinetics (PK) in vivo has been a consistent practice in early drug discovery for decades. However, its success is hampered by mispredictions attributed to uncharacterized biological phenomena/experimental artifacts. Predicted drug clearance (CL) from experimental data (i.e., intrinsic clearance: CLint; fraction unbound in plasma: fu,p) is often systematically underpredicted using the well-stirred model (WSM). The objective of this study was to evaluate using empirical scalars in the WSM to correct for CL mispredictions. Drugs (N = 28) were used to generate numerical scalars on CLint (α) and fu,p (β) to minimize the absolute average fold error (AAFE) for CL predictions. These scalars were validated using an additional dataset (N = 28 drugs) and applied to a nonredundant AstraZeneca (AZ) dataset available in the literature (N = 117 drugs) for a total of 173 compounds. CL predictions using the WSM were improved for most compounds using an α value of 3.66 (∼64% < 2-fold) compared with no scaling (∼46% < 2-fold). Similarly, using a β value of 0.55 or combination of α and β scalars (values of 1.74 and 0.66, respectively) resulted in a similar improvement in predictions (∼64% < 2-fold and ∼65% < 2-fold, respectively). For highly bound compounds (fu,p ≤ 0.01), AAFE was substantially reduced across all scaling methods. Using the β scalar alone or a combination of α and β appeared optimal and produced larger magnitude corrections for highly bound compounds. Some drugs are still disproportionally mispredicted; however, the improvements in prediction error and simplicity of applying these scalars suggest its utility for early-stage CL predictions.

SIGNIFICANCE STATEMENT

In early drug discovery, prediction of human clearance using in vitro experimental data plays an essential role in triaging compounds prior to in vivo studies. These predictions have been systematically underestimated. Here we introduce empirical scalars calibrated on the extent of plasma protein binding that appear to improve clearance predictions across multiple datasets. This approach can be used in early phases of drug discovery prior to the availability of preclinical data for early quantitative predictions of human clearance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
啦啦啦啦发布了新的文献求助10
2秒前
天天快乐应助将将将采纳,获得10
3秒前
3秒前
dj发布了新的文献求助10
4秒前
李健应助nnnd77采纳,获得10
5秒前
QIANGYI发布了新的文献求助10
5秒前
6秒前
baixue发布了新的文献求助10
6秒前
pigff发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
9秒前
kingwill完成签到,获得积分0
11秒前
leonuo发布了新的文献求助30
11秒前
xuanzeng发布了新的文献求助10
12秒前
江湖护卫舰应助Amandar采纳,获得10
12秒前
电饭宝发布了新的文献求助20
12秒前
田様应助123456采纳,获得10
12秒前
星辰大海应助嘀嘀咕咕采纳,获得10
12秒前
丨丨丨发布了新的文献求助10
14秒前
搜集达人应助TT采纳,获得10
14秒前
15秒前
newplayer完成签到,获得积分10
16秒前
哇咔咔啦完成签到,获得积分10
16秒前
17秒前
18秒前
柯飞扬完成签到,获得积分10
18秒前
18秒前
小破网发布了新的文献求助10
18秒前
qx完成签到,获得积分10
19秒前
xuanzeng完成签到,获得积分10
19秒前
19秒前
顾矜应助yoyoyoyo采纳,获得10
20秒前
科研通AI5应助懒洋洋采纳,获得10
20秒前
22秒前
22秒前
小吴同学完成签到,获得积分10
22秒前
黑煤球发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746724
求助须知:如何正确求助?哪些是违规求助? 4094243
关于积分的说明 12666636
捐赠科研通 3806161
什么是DOI,文献DOI怎么找? 2101295
邀请新用户注册赠送积分活动 1126623
关于科研通互助平台的介绍 1003174