Application of Empirical Scalars To Enable Early Prediction of Human Hepatic Clearance Using In Vitro-In Vivo Extrapolation in Drug Discovery: An Evaluation of 173 Drugs

外推法 药代动力学 体内 药理学 缩放比例 化学 医学 数学 统计 生物 几何学 生物技术
作者
Robert S. Jones,Christian Leung,Jae H. Chang,Suzanne J. Brown,Ning Liu,Zhengyin Yan,Jane R. Kenny,Fabio Broccatelli
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology & Experimental Therapeutics]
卷期号:50 (8): 1053-1063 被引量:34
标识
DOI:10.1124/dmd.121.000784
摘要

The utilization of in vitro data to predict drug pharmacokinetics (PK) in vivo has been a consistent practice in early drug discovery for decades. However, its success is hampered by mispredictions attributed to uncharacterized biological phenomena/experimental artifacts. Predicted drug clearance (CL) from experimental data (i.e., intrinsic clearance: CLint; fraction unbound in plasma: fu,p) is often systematically underpredicted using the well-stirred model (WSM). The objective of this study was to evaluate using empirical scalars in the WSM to correct for CL mispredictions. Drugs (N = 28) were used to generate numerical scalars on CLint (α) and fu,p (β) to minimize the absolute average fold error (AAFE) for CL predictions. These scalars were validated using an additional dataset (N = 28 drugs) and applied to a nonredundant AstraZeneca (AZ) dataset available in the literature (N = 117 drugs) for a total of 173 compounds. CL predictions using the WSM were improved for most compounds using an α value of 3.66 (∼64% < 2-fold) compared with no scaling (∼46% < 2-fold). Similarly, using a β value of 0.55 or combination of α and β scalars (values of 1.74 and 0.66, respectively) resulted in a similar improvement in predictions (∼64% < 2-fold and ∼65% < 2-fold, respectively). For highly bound compounds (fu,p ≤ 0.01), AAFE was substantially reduced across all scaling methods. Using the β scalar alone or a combination of α and β appeared optimal and produced larger magnitude corrections for highly bound compounds. Some drugs are still disproportionally mispredicted; however, the improvements in prediction error and simplicity of applying these scalars suggest its utility for early-stage CL predictions.

SIGNIFICANCE STATEMENT

In early drug discovery, prediction of human clearance using in vitro experimental data plays an essential role in triaging compounds prior to in vivo studies. These predictions have been systematically underestimated. Here we introduce empirical scalars calibrated on the extent of plasma protein binding that appear to improve clearance predictions across multiple datasets. This approach can be used in early phases of drug discovery prior to the availability of preclinical data for early quantitative predictions of human clearance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向的发卡完成签到,获得积分10
刚刚
雷音完成签到,获得积分10
刚刚
渔夫应助TIAn采纳,获得10
刚刚
1秒前
1秒前
bkagyin应助paper reader采纳,获得10
1秒前
2秒前
淡然夏天发布了新的文献求助10
2秒前
多多发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
3秒前
mufcyang完成签到,获得积分10
4秒前
林朝阳完成签到,获得积分10
4秒前
66hbb应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得20
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
Jingkai应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Jared应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
6秒前
安静无招完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304