An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion

计算机科学 信息融合 数据挖掘 人工智能 多数决原则 比例(比率) 基于规则的系统 投票 融合 断层(地质) 机器学习 政治学 语言学 法学 地震学 哲学 地质学 物理 政治 量子力学
作者
Zifei Xu,Musa Bashir,Wanfu Zhang,Yang Yang,Xinyu Wang,Chun Li
出处
期刊:Information Fusion [Elsevier BV]
卷期号:86-87: 17-29 被引量:55
标识
DOI:10.1016/j.inffus.2022.06.005
摘要

• Hybrid multi-scale block is constructed. • Weighted soft-voting rule of decision fusion strategy is proposed. • Fault diagnosis method driven by multi-scale information fusion is developed. The ability of engineering systems to process multi-scale information is a crucial requirement in the development of an intelligent fault diagnosis model. This study develops a hybrid multi-scale convolutional neural network model coupled with multi-attention capability (HMS-MACNN) to solve both the inefficient and insufficient extrapolation problems of multi-scale models in fault diagnosis of a system operating in complex environments. The model's capabilities are demonstrated by its ability to capture the rich multi-scale characteristics of a gearbox including time and frequency multi-scale information. The capabilities of the Multi-Attention Module, which consists of an adaptive weighted rule and a novel weighted soft-voting rule, are respectively integrated to efficiently consider the contribution of each characteristic with different scales-to-faults at both feature- and decision-levels. The model is validated against experimental gearbox fault results and offers robustness and generalization capability with F1 value that is 27% higher than other existing multi-scale CNN-based models operating in a similar environment. Furthermore, the proposed model offers higher accuracy than other generic models and can accurately assign attention to features with different scales. This offers an excellent generalization performance due to its superior capability in capturing multi-scale information and in fusing advanced features following different fusion strategies by using Multi-Attention Module and the hybrid MS block compared to conventional CNN-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
gigi发布了新的文献求助10
1秒前
Frank完成签到 ,获得积分20
2秒前
2秒前
濑兔毛发布了新的文献求助10
2秒前
2秒前
阿李完成签到 ,获得积分10
3秒前
3秒前
喜多发布了新的文献求助10
3秒前
Ava应助安详的韩庆采纳,获得10
4秒前
Orange应助脆啵啵马克宝采纳,获得30
4秒前
leomei发布了新的文献求助10
4秒前
4秒前
小墨墨发布了新的文献求助10
5秒前
无辜的河马完成签到,获得积分10
5秒前
彭于晏应助lxjjj采纳,获得10
6秒前
妮妮发布了新的文献求助30
6秒前
电容器完成签到 ,获得积分10
6秒前
美味猫堡完成签到,获得积分10
6秒前
7秒前
8秒前
浮游应助tent01采纳,获得10
8秒前
共享精神应助毛一一采纳,获得10
8秒前
冬冬完成签到,获得积分10
9秒前
乃春完成签到,获得积分10
10秒前
10秒前
善学以致用应助Hasghab采纳,获得30
10秒前
12秒前
天天快乐应助xhsz1111采纳,获得10
12秒前
12秒前
牛太虚完成签到,获得积分10
13秒前
剑K完成签到,获得积分10
14秒前
14秒前
15秒前
琪琪发布了新的文献求助10
15秒前
a123完成签到,获得积分10
15秒前
16秒前
朴素臻完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073632
求助须知:如何正确求助?哪些是违规求助? 4293744
关于积分的说明 13379375
捐赠科研通 4115142
什么是DOI,文献DOI怎么找? 2253454
邀请新用户注册赠送积分活动 1258217
关于科研通互助平台的介绍 1191108