Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fy完成签到,获得积分10
1秒前
1秒前
1秒前
Soda8513完成签到,获得积分10
2秒前
JamesPei应助研友_nPxRRn采纳,获得10
2秒前
dongguan发布了新的文献求助10
3秒前
4秒前
4秒前
Ava应助sdl采纳,获得10
4秒前
蓝多多给蓝多多的求助进行了留言
4秒前
4秒前
ZZQ完成签到 ,获得积分10
5秒前
等风来完成签到 ,获得积分10
6秒前
曾无忧应助CY03采纳,获得10
6秒前
Estrella发布了新的文献求助10
6秒前
Jzhaoc580发布了新的文献求助10
6秒前
zwd发布了新的文献求助50
7秒前
Lee发布了新的文献求助10
7秒前
7秒前
123123发布了新的文献求助10
7秒前
天真怀梦完成签到,获得积分10
8秒前
8秒前
小二郎应助拼搏的宇采纳,获得10
8秒前
桐桐应助调皮的如凡采纳,获得10
8秒前
9秒前
机灵柚子应助曾天祥采纳,获得10
9秒前
玖兰发布了新的文献求助20
10秒前
10秒前
wen完成签到,获得积分10
10秒前
lune完成签到 ,获得积分10
11秒前
wang完成签到,获得积分10
11秒前
04711发布了新的文献求助10
11秒前
流星飞发布了新的文献求助10
12秒前
未来可期发布了新的文献求助30
12秒前
luanzhaohui完成签到,获得积分20
13秒前
13秒前
田様应助dln采纳,获得10
14秒前
丘比特应助从容雨筠采纳,获得10
15秒前
大个应助fan采纳,获得10
15秒前
漫秋霞舞完成签到,获得积分10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100908
求助须知:如何正确求助?哪些是违规求助? 3638752
关于积分的说明 11530933
捐赠科研通 3347506
什么是DOI,文献DOI怎么找? 1839685
邀请新用户注册赠送积分活动 906925
科研通“疑难数据库(出版商)”最低求助积分说明 824122