Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助自觉寒梦采纳,获得10
刚刚
KPL452B发布了新的文献求助10
刚刚
duan发布了新的文献求助10
刚刚
牛奶牛奶完成签到,获得积分10
1秒前
1秒前
小小完成签到 ,获得积分10
1秒前
2秒前
2秒前
changyouhuang完成签到,获得积分10
2秒前
康K发布了新的文献求助10
2秒前
junru完成签到,获得积分20
2秒前
2秒前
脑袋空空完成签到 ,获得积分10
3秒前
Derek0203完成签到,获得积分10
3秒前
NexusExplorer应助Lily采纳,获得10
3秒前
华北走地鸡完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
Mila完成签到,获得积分10
5秒前
Xxjj完成签到,获得积分10
5秒前
水刃木完成签到,获得积分10
5秒前
苗苗完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
烤红薯发布了新的文献求助10
6秒前
6秒前
栗爷完成签到,获得积分10
6秒前
浮游应助机灵水卉采纳,获得10
6秒前
7秒前
7秒前
海阔天空发布了新的文献求助10
7秒前
keyan学渣发布了新的文献求助10
7秒前
8秒前
8秒前
小星星完成签到 ,获得积分10
8秒前
Owen应助朝阳采纳,获得10
9秒前
青柠味薯片完成签到,获得积分10
9秒前
9秒前
潘杰完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482901
求助须知:如何正确求助?哪些是违规求助? 4583628
关于积分的说明 14391412
捐赠科研通 4513097
什么是DOI,文献DOI怎么找? 2473334
邀请新用户注册赠送积分活动 1459351
关于科研通互助平台的介绍 1432939