Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts.

前列腺癌 比例危险模型 医学 肿瘤科 机器学习 人口 计算机科学 人工智能 数据挖掘 生物信息学 内科学
作者
Ruidong Li,Jianguo Zhu,Wei-De Zhong,Zhenyu Jia
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:82 (9): 1832-1843
标识
DOI:10.1158/0008-5472.can-21-3074
摘要

Overtreatment remains a pervasive problem in prostate cancer management due to the highly variable and often indolent course of disease. Molecular signatures derived from gene expression profiling have played critical roles in guiding prostate cancer treatment decisions. Many gene expression signatures have been developed to improve the risk stratification of prostate cancer and some of them have already been applied to clinical practice. However, no comprehensive evaluation has been performed to compare the performance of these signatures. In this study, we conducted a systematic and unbiased evaluation of 15 machine learning (ML) algorithms and 30 published prostate cancer gene expression-based prognostic signatures leveraging 10 transcriptomics datasets with 1,558 primary patients with prostate cancer from public data repositories. This analysis revealed that survival analysis models outperformed binary classification models for risk assessment, and the performance of the survival analysis methods-Cox model regularized with ridge penalty (Cox-Ridge) and partial least squares (PLS) regression for Cox model (Cox-PLS)-were generally more robust than the other methods. Based on the Cox-Ridge algorithm, several top prognostic signatures displayed comparable or even better performance than commercial panels. These findings will facilitate the identification of existing prognostic signatures that are promising for further validation in prospective studies and promote the development of robust prognostic models to guide clinical decision-making. Moreover, this study provides a valuable data resource from large primary prostate cancer cohorts, which can be used to develop, validate, and evaluate novel statistical methodologies and molecular signatures to improve prostate cancer management.This systematic evaluation of 15 machine learning algorithms and 30 published gene expression signatures for the prognosis of prostate cancer will assist clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
救驾来迟发布了新的文献求助10
刚刚
雄i发布了新的文献求助10
1秒前
4秒前
7秒前
zbq来完成签到,获得积分10
8秒前
霖宸羽完成签到,获得积分10
9秒前
伊力扎提发布了新的文献求助10
9秒前
浅浪完成签到,获得积分10
11秒前
zmz完成签到 ,获得积分10
11秒前
qyy发布了新的文献求助10
12秒前
As故发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
19秒前
今后应助qyy采纳,获得10
20秒前
慧慧发布了新的文献求助10
22秒前
雄i完成签到,获得积分10
22秒前
郭大侠发布了新的文献求助10
23秒前
妤懿发布了新的文献求助30
24秒前
25秒前
贪玩的豪英完成签到,获得积分10
26秒前
lm发布了新的文献求助10
28秒前
30秒前
36秒前
37秒前
tt发布了新的文献求助10
38秒前
小红花完成签到,获得积分10
39秒前
40秒前
GEEK发布了新的文献求助10
41秒前
43秒前
43秒前
wanci应助何不可采纳,获得10
43秒前
科研通AI6应助白开水采纳,获得10
45秒前
45秒前
46秒前
49秒前
52秒前
科研通AI5应助帅气的凝雁采纳,获得10
52秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4812366
求助须知:如何正确求助?哪些是违规求助? 4125096
关于积分的说明 12764283
捐赠科研通 3862042
什么是DOI,文献DOI怎么找? 2125718
邀请新用户注册赠送积分活动 1147312
关于科研通互助平台的介绍 1041072