DCE-MRI based radiomics nomogram for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma

列线图 医学 无线电技术 肝内胆管癌 单变量 放射科 队列 接收机工作特性 逻辑回归 单变量分析 多元分析 肿瘤科 内科学 多元统计 机器学习 计算机科学
作者
Yang Zhou,Guofeng Zhou,Jiulou Zhang,Chen Xu,Feipeng Zhu,Pengju Xu
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (7): 5004-5015 被引量:30
标识
DOI:10.1007/s00330-022-08548-2
摘要

To establish a radiomics nomogram based on dynamic contrast-enhanced (DCE) MR images to preoperatively differentiate combined hepatocellular-cholangiocarcinoma (cHCC-CC) from mass-forming intrahepatic cholangiocarcinoma (IMCC).A total of 151 training cohort patients (45 cHCC-CC and 106 IMCC) and 65 validation cohort patients (19 cHCC-CC and 46 IMCC) were enrolled. Findings of clinical characteristics and MR features were analyzed. Radiomics features were extracted from the DCE-MR images. A radiomics signature was built based on radiomics features by the least absolute shrinkage and selection operator algorithm. Univariate and multivariate analyses were used to identify the significant clinicoradiological variables and construct a clinical model. The radiomics signature and significant clinicoradiological variables were then incorporated into the radiomics nomogram by multivariate logistic regression analysis. Performance of the radiomics nomogram, radiomics signature, and clinical model was assessed by receiver operating characteristic and area under the curve (AUC) was compared.Eleven radiomics features were selected to develop the radiomics signature. The radiomics nomogram integrating the alpha fetoprotein, background liver disease (cirrhosis or chronic hepatitis), and radiomics signature showed favorable calibration and discrimination performance with an AUC value of 0.945 in training cohort and 0.897 in validation cohort. The AUCs for the radiomics signature and clinical model were 0.848 and 0.856 in training cohort and 0.792 and 0.809 in validation cohort, respectively. The radiomics nomogram outperformed both the radiomics signature and clinical model alone (p < 0.05).The radiomics nomogram based on DCE-MRI may provide an effective and noninvasive tool to differentiate cHCC-CC from IMCC, which could help guide treatment strategies.• The radiomics signature based on dynamic contrast-enhanced magnetic resonance imaging is useful to preoperatively differentiate cHCC-CC from IMCC. • The radiomics nomogram showed the best performance in both training and validation cohorts for differentiating cHCC-CC from IMCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gttlyb完成签到,获得积分10
3秒前
3秒前
哥哥发布了新的文献求助10
4秒前
QingCress77完成签到 ,获得积分10
5秒前
5秒前
Grijze完成签到,获得积分10
6秒前
9秒前
10秒前
11秒前
loujiafei完成签到,获得积分10
11秒前
stresm完成签到,获得积分10
14秒前
rmbsLHC发布了新的文献求助10
15秒前
丘比特应助benhzh采纳,获得10
16秒前
wangdaqing完成签到,获得积分10
16秒前
18秒前
19秒前
19秒前
愉快雅山完成签到 ,获得积分10
19秒前
19秒前
双刀火鸡完成签到,获得积分10
20秒前
鲤鱼幼翠发布了新的文献求助10
21秒前
英俊的铭应助洋芋蛋er采纳,获得30
21秒前
21秒前
sys完成签到,获得积分20
21秒前
嫣儿发布了新的文献求助10
22秒前
CC1219应助幕雪采纳,获得10
22秒前
ZTF完成签到,获得积分10
22秒前
猫会后空翻完成签到 ,获得积分10
23秒前
23秒前
yanghuige发布了新的文献求助10
24秒前
Leisure_Lee完成签到,获得积分10
24秒前
淡然紫蓝发布了新的文献求助10
25秒前
25秒前
25秒前
传奇3应助冷静的天佑采纳,获得10
26秒前
科研通AI5应助学术小白采纳,获得10
26秒前
26秒前
WANG发布了新的文献求助20
29秒前
judy完成签到,获得积分20
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815115
求助须知:如何正确求助?哪些是违规求助? 3359118
关于积分的说明 10400037
捐赠科研通 3076704
什么是DOI,文献DOI怎么找? 1689964
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767642