Role of layered structure in ductility improvement of layered Ti-Al metal composite

材料科学 复合材料 延展性(地球科学) 变形(气象学) 极限抗拉强度 复合数 蠕动
作者
Meng Huang,Chao Xu,Guohua Fan,Emad Maawad,Weimin Gan,Lin Geng,Fengxiang Lin,Guangze Tang,Hao Wu,Yan Du,Danyang Li,Kesong Miao,Tongtong Zhang,Xuesong Yang,Yiping Xia,Guojian Cao,Huijun Kang,Tongmin Wang,Tiqiao Xiao,Honglan Xie
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:153: 235-249 被引量:345
标识
DOI:10.1016/j.actamat.2018.05.005
摘要

Layered Ti-Al metal composite (LMC) was designed and fabricated by hot-rolling and annealing of pure Ti and Al sheets. The as-prepared composite exhibits high tensile ductility, being superior to any individual Ti or Al sheets. The stress/strain evolution and fracture behavior of the LMC were analyzed by in-situ observations during the tensile deformation. Three deformation stages of LMC were clearly observed by neutron diffraction: elastic stage, elastic-plastic stage and plastic stage. It is found that stress partitioning at the elastic-plastic deformation stage improves the strain balance of LMC, but leads to an internal stress accumulated at the interface. Additionally, a strain-transfer from Ti to adjacent Al layers relieves the strain localization of Ti layers in LMC, which improves the ductility of Ti. Both stress partitioning and strain localization of Ti layers facilitate the nucleation of cracks at a low macro strain. However, the crack propagation is constrained by layered structure. In terms of the Al layers, the constrained micro-cracks relieve the stress concentration in Al layer and improve the ductility of Al layers, so that cracking indirectly affects the plastic deformation behavior of LMC, then improving its entire ductility. This work provides a new structural strategy towards simultaneously improving strength and ductility to develop high performance LMC by structural design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
春雷完成签到,获得积分10
2秒前
XUU发布了新的文献求助10
3秒前
灯灯灯完成签到,获得积分20
3秒前
3秒前
风吹麦浪发布了新的文献求助10
4秒前
5秒前
爆米花应助zxh采纳,获得10
6秒前
wuyu发布了新的文献求助10
6秒前
LHT完成签到,获得积分10
7秒前
礼礼发布了新的文献求助10
7秒前
Skywalker发布了新的文献求助10
8秒前
9秒前
10秒前
ZY发布了新的文献求助10
10秒前
热情的小土豆完成签到,获得积分10
10秒前
蜗牛完成签到,获得积分10
10秒前
qin完成签到,获得积分10
11秒前
FashionBoy应助清爽的山水采纳,获得10
11秒前
jay完成签到,获得积分10
12秒前
时迁完成签到,获得积分20
13秒前
慕青应助Skywalker采纳,获得10
13秒前
13秒前
和谐的孱完成签到,获得积分10
14秒前
Szhou发布了新的文献求助10
14秒前
桐桐应助qin采纳,获得10
15秒前
秋霜完成签到,获得积分10
15秒前
kala发布了新的文献求助10
15秒前
16秒前
16秒前
骆十八完成签到,获得积分10
17秒前
shi发布了新的文献求助10
18秒前
puppy发布了新的文献求助10
18秒前
18秒前
Akim应助WANG采纳,获得10
22秒前
斯丹康发布了新的文献求助10
22秒前
Ava应助结实的秋寒采纳,获得10
23秒前
23秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903327
求助须知:如何正确求助?哪些是违规求助? 3447943
关于积分的说明 10851595
捐赠科研通 3173446
什么是DOI,文献DOI怎么找? 1753377
邀请新用户注册赠送积分活动 847736
科研通“疑难数据库(出版商)”最低求助积分说明 790346