Effects of sample size on the performance of species distribution models

样本量测定 样品(材料) 统计 航程(航空) 物种分布 公制(单位) 计算机科学 算法 数学 生态学 生物 物理 热力学 运营管理 复合材料 经济 栖息地 材料科学
作者
Mary S. Wisz,Robert J. Hijmans,J. Li,A. Townsend Peterson,Catherine H. Graham,Antoine Guisan
出处
期刊:Diversity and Distributions [Wiley]
卷期号:14 (5): 763-773 被引量:1755
标识
DOI:10.1111/j.1472-4642.2008.00482.x
摘要

ABSTRACT A wide range of modelling algorithms is used by ecologists, conservation practitioners, and others to predict species ranges from point locality data. Unfortunately, the amount of data available is limited for many taxa and regions, making it essential to quantify the sensitivity of these algorithms to sample size. This is the first study to address this need by rigorously evaluating a broad suite of algorithms with independent presence–absence data from multiple species and regions. We evaluated predictions from 12 algorithms for 46 species (from six different regions of the world) at three sample sizes (100, 30, and 10 records). We used data from natural history collections to run the models, and evaluated the quality of model predictions with area under the receiver operating characteristic curve (AUC). With decreasing sample size, model accuracy decreased and variability increased across species and between models. Novel modelling methods that incorporate both interactions between predictor variables and complex response shapes (i.e. GBM, MARS‐INT, BRUTO) performed better than most methods at large sample sizes but not at the smallest sample sizes. Other algorithms were much less sensitive to sample size, including an algorithm based on maximum entropy (MAXENT) that had among the best predictive power across all sample sizes. Relative to other algorithms, a distance metric algorithm (DOMAIN) and a genetic algorithm (OM‐GARP) had intermediate performance at the largest sample size and among the best performance at the lowest sample size. No algorithm predicted consistently well with small sample size ( n < 30) and this should encourage highly conservative use of predictions based on small sample size and restrict their use to exploratory modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哩哩发布了新的文献求助10
1秒前
美满的皮卡丘完成签到 ,获得积分10
1秒前
fsy发布了新的文献求助10
1秒前
1秒前
万能图书馆应助ww采纳,获得10
1秒前
2秒前
chyu1057完成签到 ,获得积分10
2秒前
芝麻糊应助想好好搞事业采纳,获得10
2秒前
3秒前
cxzdm完成签到,获得积分10
3秒前
大魁完成签到,获得积分10
3秒前
科研通AI5应助Eric采纳,获得10
4秒前
魏芸芸完成签到,获得积分10
4秒前
滴溜完成签到 ,获得积分10
5秒前
猫了个喵发布了新的文献求助30
5秒前
李健应助王大锤2015采纳,获得10
5秒前
5秒前
123433发布了新的文献求助10
6秒前
7秒前
7秒前
爱静静应助艺术家脾气采纳,获得10
7秒前
8秒前
8秒前
Singularity应助魏芸芸采纳,获得10
9秒前
10秒前
10秒前
郝老头完成签到,获得积分10
10秒前
10秒前
11秒前
不羁完成签到 ,获得积分10
11秒前
舒仲完成签到,获得积分10
11秒前
11秒前
科研边角料完成签到,获得积分10
12秒前
夏栀mall完成签到,获得积分10
12秒前
SX0000完成签到 ,获得积分10
12秒前
12秒前
123433完成签到,获得积分10
13秒前
13秒前
Druid发布了新的文献求助10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861147
求助须知:如何正确求助?哪些是违规求助? 3403498
关于积分的说明 10635450
捐赠科研通 3126689
什么是DOI,文献DOI怎么找? 1724231
邀请新用户注册赠送积分活动 830410
科研通“疑难数据库(出版商)”最低求助积分说明 779133