Computational and Theoretical Methods for Protein Folding

计算机科学 建设性的 折叠(DSP实现) 背景(考古学) 计算模型 蛋白质折叠 过程(计算) 计算 理论计算机科学 人工智能 数据科学 算法 化学 生物 操作系统 电气工程 工程类 古生物学 生物化学
作者
Mario Compiani,Emidio Capriotti
出处
期刊:Biochemistry [American Chemical Society]
卷期号:52 (48): 8601-8624 被引量:62
标识
DOI:10.1021/bi4001529
摘要

A computational approach is essential whenever the complexity of the process under study is such that direct theoretical or experimental approaches are not viable. This is the case for protein folding, for which a significant amount of data are being collected. This paper reports on the essential role of in silico methods and the unprecedented interplay of computational and theoretical approaches, which is a defining point of the interdisciplinary investigations of the protein folding process. Besides giving an overview of the available computational methods and tools, we argue that computation plays not merely an ancillary role but has a more constructive function in that computational work may precede theory and experiments. More precisely, computation can provide the primary conceptual clues to inspire subsequent theoretical and experimental work even in a case where no preexisting evidence or theoretical frameworks are available. This is cogently manifested in the application of machine learning methods to come to grips with the folding dynamics. These close relationships suggested complementing the review of computational methods within the appropriate theoretical context to provide a self-contained outlook of the basic concepts that have converged into a unified description of folding and have grown in a synergic relationship with their computational counterpart. Finally, the advantages and limitations of current computational methodologies are discussed to show how the smart analysis of large amounts of data and the development of more effective algorithms can improve our understanding of protein folding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
酷波er应助尘默采纳,获得10
1秒前
BowieHuang应助CJ采纳,获得10
1秒前
Ava应助LSH970829采纳,获得10
1秒前
2秒前
路寻发布了新的文献求助20
2秒前
3秒前
3秒前
3秒前
Hello应助沥青拌蛋黄采纳,获得10
3秒前
wamjs发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
tl123456发布了新的文献求助10
7秒前
7秒前
NONO发布了新的文献求助10
8秒前
vv完成签到 ,获得积分10
9秒前
慢吞吞发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
小白发布了新的文献求助10
11秒前
Wentworth发布了新的文献求助10
11秒前
刻苦的黑米完成签到,获得积分10
12秒前
12秒前
15735802374完成签到,获得积分20
12秒前
12秒前
lulu666发布了新的文献求助10
13秒前
小二郎应助虎虎采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
hhh完成签到,获得积分10
16秒前
Wentworth完成签到,获得积分10
17秒前
细心的冰颜完成签到,获得积分20
17秒前
tl123456完成签到,获得积分10
18秒前
Jasper应助小房子采纳,获得10
18秒前
18秒前
LLLucen完成签到 ,获得积分10
19秒前
早睡早起发布了新的文献求助10
19秒前
SHC完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708730
求助须知:如何正确求助?哪些是违规求助? 5190024
关于积分的说明 15254868
捐赠科研通 4861676
什么是DOI,文献DOI怎么找? 2609565
邀请新用户注册赠送积分活动 1560120
关于科研通互助平台的介绍 1517828