Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis

协变量 非金属 逐步回归 统计 人口 选型 回归分析 回归 计量经济学 数学 选择(遗传算法) 计算机科学 医学 人工智能 环境卫生
作者
Ulrika Wählby,E. Niclas Jonsson,Mats O. Karlsson
出处
期刊:Aaps Pharmsci [American Association of Pharmaceutical Scientists]
卷期号:4 (4): 68-79 被引量:210
标识
DOI:10.1208/ps040427
摘要

The aim of this study was to compare 2 stepwise covariate model-building strategies, frequently used in the analysis of pharmacokinetic-pharmacodynamic (PK-PD) data using nonlinear mixed-effects models, with respect to included covariates and predictive performance. In addition, the effects of stepwise regression on the estimated covariate coefficients wise regression on the estimated covariate coefficients were assessed. Using simulated and real PK data, covariate models were built applying (1) stepwise generalized additive models (GAM) for identifying potential covariates, followed by backward elimination in the computer program NONMEM, and (2) stepwise forward inclusion and backward elimination in NONMEM. Different versions of these procedures were tried (eg, treating different study occasions as separate individuals in the GAM, or fixing a part of the parameters when the NONMEM procedure was used). The final covariate models were compared, including their ability to predict a separate data set or their performance in cross-validation. The bias in the estimated coefficients (selection bias) was assessed. The model-building procedures performed similarly in the data sets explored. No major differences in the resulting covariate models were seen, and the predictive performances overlapped. Therefore, the choice of model-building procedure in these examples could be based on other aspects such as analyst-and computer-time efficiency. There was a tendency to selection bias in the estimates, although this was small relative to the overall variability in the estimates. The predictive performances of the stepwise models were also reasonably good. Thus, selection bias seems to be a minor problem in this typical PK covariate analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助WK123采纳,获得10
刚刚
lululu完成签到 ,获得积分20
刚刚
ZJ发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
5秒前
5秒前
6秒前
mao发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助150
7秒前
ZJ完成签到,获得积分20
7秒前
10秒前
10秒前
yy发布了新的文献求助10
11秒前
11秒前
myk发布了新的文献求助10
12秒前
花生完成签到 ,获得积分10
14秒前
苏苏完成签到,获得积分20
15秒前
El发布了新的文献求助10
15秒前
WK123发布了新的文献求助10
16秒前
17秒前
小二郎应助anyilin采纳,获得10
20秒前
orixero应助苏苏采纳,获得10
21秒前
21秒前
着急的青枫应助白嫖论文采纳,获得10
21秒前
圥忈发布了新的文献求助10
22秒前
25秒前
2019kyxb发布了新的文献求助10
26秒前
jinyuqian完成签到,获得积分10
26秒前
心灵美的从灵完成签到 ,获得积分10
28秒前
小张完成签到 ,获得积分10
28秒前
28秒前
alanbike发布了新的文献求助10
29秒前
30秒前
31秒前
soumei发布了新的文献求助10
32秒前
32秒前
2019kyxb完成签到,获得积分20
34秒前
慕青应助健壮的夕阳采纳,获得30
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850429
求助须知:如何正确求助?哪些是违规求助? 4149669
关于积分的说明 12855096
捐赠科研通 3897196
什么是DOI,文献DOI怎么找? 2142061
邀请新用户注册赠送积分活动 1161581
关于科研通互助平台的介绍 1061557