估计员
分位数
数学
特征选择
收敛速度
Lasso(编程语言)
花键(机械)
数学优化
甲骨文公司
应用数学
变量(数学)
分位数回归
线性回归
惩罚法
选型
选择(遗传算法)
计算机科学
统计
人工智能
软件工程
计算机网络
频道(广播)
工程类
数学分析
万维网
结构工程
作者
Jiang Du,Zhongzhan Zhang,Zhimeng Sun
标识
DOI:10.1142/s1793524513500150
摘要
In this paper, we propose a variable selection procedure for partially linear varying coefficient model under quantile loss function with adaptive Lasso penalty. The functional coefficients are estimated by B-spline approximations. The proposed procedure simultaneously selects significant variables and estimates unknown parameters. The major advantage of the proposed procedures over the existing ones is easy to implement using existing software, and it requires no specification of the error distributions. Under the regularity conditions, we show that the proposed procedure can be as efficient as the Oracle estimator, and derive the optimal convergence rate of the functional coefficients. A simulation study and a real data application are undertaken to assess the finite sample performance of the proposed variable selection procedure.
科研通智能强力驱动
Strongly Powered by AbleSci AI