Evolutionary programming made faster

最大值和最小值 模拟退火 水准点(测量) 局部搜索(优化) 计算机科学 数学优化 数学 柯西分布 进化算法 操作员(生物学) 高斯分布 算法 统计 数学分析 抑制因子 化学 物理 生物化学 大地测量学 量子力学 转录因子 基因 地理
作者
Xin Yao,Yong Liu,Guangming Lin
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:3 (2): 82-102 被引量:3696
标识
DOI:10.1109/4235.771163
摘要

Evolutionary programming (EP) has been applied with success to many numerical and combinatorial optimization problems in recent years. EP has rather slow convergence rates, however, on some function optimization problems. In the paper, a "fast EP" (FEP) is proposed which uses a Cauchy instead of Gaussian mutation as the primary search operator. The relationship between FEP and classical EP (CEP) is similar to that between fast simulated annealing and the classical version. Both analytical and empirical studies have been carried out to evaluate the performance of FEP and CEP for different function optimization problems. The paper shows that FEP is very good at search in a large neighborhood while CEP is better at search in a small local neighborhood. For a suite of 23 benchmark problems, FEP performs much better than CEP for multimodal functions with many local minima while being comparable to CEP in performance for unimodal and multimodal functions with only a few local minima. The paper also shows the relationship between the search step size and the probability of finding a global optimum and thus explains why FEP performs better than CEP on some functions but not on others. In addition, the importance of the neighborhood size and its relationship to the probability of finding a near-optimum is investigated. Based on these analyses, an improved FEP (IFEP) is proposed and tested empirically. This technique mixes different search operators (mutations). The experimental results show that IFEP performs better than or as well as the better of FEP and CEP for most benchmark problems tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TheQ完成签到 ,获得积分10
1秒前
bigheadear给bigheadear的求助进行了留言
1秒前
虚幻煎饼完成签到 ,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
天天向上完成签到 ,获得积分10
3秒前
黄毅完成签到,获得积分10
7秒前
7秒前
Rena完成签到,获得积分20
8秒前
朱文韬完成签到,获得积分10
9秒前
ShellyMaya完成签到 ,获得积分10
11秒前
Rena发布了新的文献求助10
12秒前
情怀应助gjp采纳,获得10
12秒前
14秒前
15秒前
结实山水完成签到 ,获得积分10
15秒前
小羊完成签到,获得积分20
17秒前
思思完成签到,获得积分10
18秒前
爆米花应助AFF采纳,获得10
19秒前
19秒前
动漫大师发布了新的文献求助10
20秒前
Dennis发布了新的文献求助10
20秒前
20秒前
18340312141发布了新的文献求助30
23秒前
成太发布了新的文献求助10
23秒前
Isaacwg168完成签到 ,获得积分10
25秒前
和谐尔阳完成签到 ,获得积分10
26秒前
王霖应助勤奋笑卉采纳,获得10
27秒前
28秒前
Gary完成签到,获得积分10
28秒前
慕青应助guangshuang采纳,获得10
30秒前
30秒前
31秒前
小潘完成签到,获得积分10
31秒前
旧梦如烟完成签到,获得积分10
31秒前
英姑应助闫111采纳,获得10
32秒前
Glugas完成签到,获得积分10
32秒前
越遇完成签到 ,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781029
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227468
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669541
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734