Structural Alert/Reactive Metabolite Concept as Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxicity: A Perspective Based on the Critical Examination of Trends in the Top 200 Drugs Marketed in the United States

毒性 药品 化学 透视图(图形) 代谢物 药理学 医学 风险分析(工程) 计算生物学 生化工程 生物 计算机科学 生物化学 有机化学 工程类 人工智能
作者
Antonia F. Stepan,Daniel P. Walker,Jonathan Bauman,David A. Price,Thomas A. Baillie,Amit S. Kalgutkar,Michael D. Aleo
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:24 (9): 1345-1410 被引量:679
标识
DOI:10.1021/tx200168d
摘要

Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated. In addition, the multifactorial nature of idiosyncratic toxicity is now well recognized based upon observations that mechanisms other than RM formation (e.g., mitochondrial toxicity and inhibition of bile salt export pump (BSEP)) also can account for certain target organ toxicities. Hence, fundamental questions arise such as: When is a molecule that contains a structural alert (RM positive or negative) a cause for concern? Could the molecule in its parent form exert toxicity? Can a low dose drug candidate truly mitigate metabolism-dependent and -independent idiosyncratic toxicity risks? In an effort to address these questions, we have retrospectively examined 68 drugs (recalled or associated with a black box warning due to idiosyncratic toxicity) and the top 200 drugs (prescription and sales) in the United States in 2009 for trends in physiochemical characteristics, daily doses, presence of structural alerts, evidence for RM formation as well as toxicity mechanism(s) potentially mediated by parent drugs. Collectively, our analysis revealed that a significant proportion (∼78-86%) of drugs associated with toxicity contained structural alerts and evidence indicating that RM formation as a causative factor for toxicity has been presented in 62-69% of these molecules. In several cases, mitochondrial toxicity and BSEP inhibition mediated by parent drugs were also noted as potential causative factors. Most drugs were administered at daily doses exceeding several hundred milligrams. There was no obvious link between idiosyncratic toxicity and physicochemical properties such as molecular weight, lipophilicity, etc. Approximately half of the top 200 drugs for 2009 (prescription and sales) also contained one or more alerts in their chemical architecture, and many were found to be RM-positive. Several instances of BSEP and mitochondrial liabilities were also noted with agents in the top 200 category. However, with relatively few exceptions, the vast majority of these drugs are rarely associated with idiosyncratic toxicity, despite years of patient use. The major differentiating factor appeared to be the daily dose; most of the drugs in the top 200 list are administered at low daily doses. In addition, competing detoxication pathways and/or alternate nonmetabolic clearance routes provided suitable justifications for the safety records of RM-positive drugs in the top 200 category. Thus, while RM elimination may be a useful and pragmatic starting point in mitigating idiosyncratic toxicity risks, our analysis suggests a need for a more integrated screening paradigm for chemical hazard identification in drug discovery. Thus, in addition to a detailed assessment of RM formation potential (in relationship to the overall elimination mechanisms of the compound(s)) for lead compounds, effects on cellular health (e.g., cytotoxicity assays), BSEP inhibition, and mitochondrial toxicity are the recommended suite of assays to characterize compound liabilities. However, the prospective use of such data in compound selection will require further validation of the cellular assays using marketed agents. Until we gain a better understanding of the pathophysiological mechanisms associated with idiosyncratic toxicities, improving pharmacokinetics and intrinsic potency as means of decreasing the dose size and the associated "body burden" of the parent drug and its metabolites will remain an overarching goal in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shelly发布了新的文献求助20
刚刚
楚明允完成签到 ,获得积分10
刚刚
凯子哥完成签到,获得积分10
1秒前
小羿羿呀完成签到,获得积分10
1秒前
2秒前
李健的小迷弟应助DChen采纳,获得10
2秒前
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
短腿小柯基完成签到 ,获得积分10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得30
2秒前
慕青应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得50
3秒前
小小油应助科研通管家采纳,获得20
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得20
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
胡雨欣应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
AY发布了新的文献求助30
4秒前
youyouyou完成签到,获得积分10
4秒前
4秒前
4秒前
韦小强发布了新的文献求助10
5秒前
Amikacin发布了新的文献求助10
5秒前
一人发布了新的文献求助10
5秒前
852应助自信板栗采纳,获得10
5秒前
咸鱼完成签到,获得积分10
6秒前
6秒前
6秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620490
求助须知:如何正确求助?哪些是违规求助? 4705162
关于积分的说明 14930480
捐赠科研通 4762102
什么是DOI,文献DOI怎么找? 2551025
邀请新用户注册赠送积分活动 1513711
关于科研通互助平台的介绍 1474608