On-line learning of indoor temperature forecasting models towards energy efficiency

暖通空调 能源消耗 人工神经网络 空调 计算机科学 高效能源利用 模拟 人工智能 工程类 机器学习 电气工程 机械工程
作者
Francisco Zamora-Martínez,Pablo Romeu,Paloma Botella-Rocamora,Juan Pardo
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:83: 162-172 被引量:106
标识
DOI:10.1016/j.enbuild.2014.04.034
摘要

The SMLsystem is a house built at the Universidad CEU Cardenal Herrera (CEU-UCH) to participate in the Solar Decathlon 2012 competition. Several technologies have been integrated to reduce power consumption. A predictive module, based on artificial neural networks (ANNs), has been developed using data acquired in Valencia. The module produces short-term forecast of indoor temperature, using as input data captured by a complex monitoring system. The system expects to reduce the power consumption related to Heating, Ventilation and Air Conditioning (HVAC) system, due to the following assumptions: the high power consumption for which HVAC is responsible (53.9% of the overall consumption); and the energy needed to maintain temperature is less than the energy required to lower/increase it. This paper studies the development viability of predictive systems for a totally unknown environment applying on-line learning techniques. The model parameters are estimated starting from a totally random model or from an unbiased a priori knowledge. These forecasting measures could allow the house to adapt itself to future temperature conditions by using home automation in an energy-efficient manner. Experimental results show reasonable forecasting accuracy with simple models, and in relatively short training time (4–5 days).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助Li采纳,获得10
1秒前
1秒前
wanci应助彩虹猫采纳,获得10
1秒前
1秒前
可爱的函函应助zx采纳,获得30
1秒前
沉静盼易发布了新的文献求助10
1秒前
3秒前
3秒前
李爱国应助外向寄云采纳,获得10
3秒前
3秒前
4秒前
魔幻的猕猴桃完成签到,获得积分10
4秒前
李健应助沉静盼易采纳,获得10
4秒前
xiaoxin发布了新的文献求助10
5秒前
美满忆安完成签到,获得积分10
5秒前
Li发布了新的文献求助30
6秒前
6秒前
可爱的函函应助阿渺采纳,获得10
6秒前
蒙萌葫发布了新的文献求助30
6秒前
6秒前
7秒前
ice完成签到,获得积分10
7秒前
Vivian完成签到,获得积分10
7秒前
科研通AI2S应助慕容飞凤采纳,获得10
7秒前
Syj2468完成签到,获得积分10
7秒前
8秒前
yuhuai发布了新的文献求助10
8秒前
v啦啦啦啦完成签到 ,获得积分10
8秒前
windmill完成签到,获得积分10
8秒前
bobo发布了新的文献求助10
9秒前
苏安莲发布了新的文献求助10
9秒前
钩子89完成签到,获得积分10
10秒前
zx完成签到,获得积分20
10秒前
GFY完成签到,获得积分10
10秒前
研友_8yX0xZ完成签到,获得积分10
10秒前
ding应助小夏采纳,获得10
11秒前
11秒前
zx发布了新的文献求助30
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796857
求助须知:如何正确求助?哪些是违规求助? 3342064
关于积分的说明 10309901
捐赠科研通 3058866
什么是DOI,文献DOI怎么找? 1678510
邀请新用户注册赠送积分活动 806071
科研通“疑难数据库(出版商)”最低求助积分说明 762909