数学
QR分解
组合数学
因式分解
三角矩阵
秩(图论)
整数(计算机科学)
排列(音乐)
基质(化学分析)
有界函数
置换矩阵
矩阵分解
算法
学位(音乐)
多项式的
离散数学
可逆矩阵
特征向量
数学分析
纯数学
计算机科学
物理
量子力学
材料科学
复合材料
循环矩阵
声学
程序设计语言
作者
Ming Gu,Stanley C. Eisenstat
摘要
Given an $m \times n$ matrix M with $m \geqslant n$, it is shown that there exists a permutation $\Pi $ and an integer k such that the QR factorization \[ M\Pi = Q\left( {\begin{array}{*{20}c} {A_k } & {B_k } \\ {} & {C_k } \\ \end{array} } \right) \] reveals the numerical rank of M: the $k \times k$ upper-triangular matrix $A_k $ is well conditioned, $\|C_k \|_2 $ is small, and $B_k $is linearly dependent on $A_k $ with coefficients bounded by a low-degree polynomial in n. Existing rank-revealing QR (RRQR) algorithms are related to such factorizations and two algorithms are presented for computing them. The new algorithms are nearly as efficient as QR with column pivoting for most problems and take $O(mn^2 )$ floating-point operations in the worst case.
科研通智能强力驱动
Strongly Powered by AbleSci AI