The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data

计算机科学 基因组 正确性 1000基因组计划 集合(抽象数据类型) DNA测序 生物 计算生物学 单核苷酸多态性 程序设计语言 遗传学 DNA 基因 基因型
作者
Aaron McKenna,Matthew G. Hanna,Eric Banks,Andrey Sivachenko,Kristian Cibulskis,Andrew Kernytsky,Kiran Garimella,David Altshuler,Stacey Gabriel,Mark J. Daly,Mark A. DePristo
出处
期刊:Genome Research [Cold Spring Harbor Laboratory]
卷期号:20 (9): 1297-1303 被引量:28579
标识
DOI:10.1101/gr.107524.110
摘要

Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Nymeria采纳,获得30
2秒前
zzzyt完成签到,获得积分10
2秒前
不安的醉薇完成签到,获得积分10
2秒前
Xiaoming85完成签到,获得积分10
3秒前
3秒前
农大彭于晏完成签到,获得积分10
3秒前
4秒前
lzj发布了新的文献求助10
4秒前
Hello应助苻谷丝采纳,获得10
4秒前
5秒前
桐桐应助逗逗豆芽采纳,获得10
5秒前
ning发布了新的文献求助30
5秒前
黄123huang_发布了新的文献求助10
5秒前
我太想进步了完成签到,获得积分10
5秒前
wuliwen完成签到,获得积分10
5秒前
可一可再完成签到 ,获得积分10
6秒前
coke应助精明代灵采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
此晴可待发布了新的文献求助10
7秒前
七米日光完成签到,获得积分10
8秒前
9秒前
bai发布了新的文献求助10
9秒前
SciGPT应助我太想进步了采纳,获得10
9秒前
卡冈图雅完成签到,获得积分10
10秒前
111发布了新的文献求助10
10秒前
英俊的铭应助JYXie采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
zzy发布了新的文献求助10
11秒前
11秒前
GuMingyang发布了新的文献求助10
12秒前
墨菲完成签到,获得积分10
12秒前
weixiaoweio完成签到,获得积分10
12秒前
天真的铭完成签到,获得积分10
13秒前
Sucre完成签到,获得积分20
13秒前
kingnb完成签到,获得积分10
14秒前
此晴可待完成签到,获得积分10
14秒前
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620548
求助须知:如何正确求助?哪些是违规求助? 4705184
关于积分的说明 14930630
捐赠科研通 4762246
什么是DOI,文献DOI怎么找? 2551059
邀请新用户注册赠送积分活动 1513711
关于科研通互助平台的介绍 1474633