MAPK/ERK通路
丝裂原活化蛋白激酶
细胞生物学
脂多糖
蛋白激酶A
巨噬细胞
激酶
化学
丝裂原活化蛋白激酶激酶
信号转导
生物
生物化学
免疫学
体外
作者
Subhash B. Arya,Gaurav Kumar,Harmeet Kaur,Amandeep Kaur,Amit Tuli
标识
DOI:10.1074/jbc.ra117.000727
摘要
ADP-ribosylation factor-like GTPase 11 (ARL11) is a cancer-predisposing gene that has remained functionally uncharacterized to date. In this study, we report that ARL11 is endogenously expressed in mouse and human macrophages and regulates their activation in response to lipopolysaccharide (LPS) stimulation. Accordingly, depletion of ARL11 impaired both LPS-stimulated pro-inflammatory cytokine production by macrophages and their ability to control intracellular replication of Salmonella. LPS-stimulated activation of extracellular signal–regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) was substantially compromised in Arl11-silenced macrophages. In contrast, increased expression of ARL11 led to constitutive ERK1/2 phosphorylation, resulting in macrophage exhaustion. Finally, we found that ARL11 forms a complex with phospho-ERK in macrophages within minutes of LPS stimulation. Taken together, our findings establish ARL11 as a novel regulator of ERK signaling in macrophages, required for macrophage activation and immune function. ADP-ribosylation factor-like GTPase 11 (ARL11) is a cancer-predisposing gene that has remained functionally uncharacterized to date. In this study, we report that ARL11 is endogenously expressed in mouse and human macrophages and regulates their activation in response to lipopolysaccharide (LPS) stimulation. Accordingly, depletion of ARL11 impaired both LPS-stimulated pro-inflammatory cytokine production by macrophages and their ability to control intracellular replication of Salmonella. LPS-stimulated activation of extracellular signal–regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) was substantially compromised in Arl11-silenced macrophages. In contrast, increased expression of ARL11 led to constitutive ERK1/2 phosphorylation, resulting in macrophage exhaustion. Finally, we found that ARL11 forms a complex with phospho-ERK in macrophages within minutes of LPS stimulation. Taken together, our findings establish ARL11 as a novel regulator of ERK signaling in macrophages, required for macrophage activation and immune function.
科研通智能强力驱动
Strongly Powered by AbleSci AI